Skip to main content
Log in

Coexisting ultramylonite and pseudotachylyte from the eastern segment of the Mahanadi shear zone, Eastern Ghats Mobile Belt

  • Published:
Journal of the Geological Society of India

Abstract

Pseudotachylytes occur associated with mylonite and ultramylonite in the Mahanadi shear zone (MSZ) in the Eastern Ghats Mobile Belt (EGMB). The MSZ is about 200 km long curvilinear high strain zone trending WNW-ESE in its eastern part that splays out in the west. In Kantilo-Ganian segment of MSZ in northern EGMB, an interbanded sequence of granulite facies lithoassemblage has undergone ductile shearing. Kinematic studies of mylonite and ultramylonite indicate MSZ to be a NE-dipping, extensional type ductile shear zone. Non-coaxial metamorphic growth of garnet and presence of truncated sillimanite-fish in ultramylonite suggest high temperature regime during shearing. Pseudotachylytes in MSZ occur as millimetre thick layers to decimetre thick zones containing fragments of mylonite, ultramylonite and lithic clasts. Pseudotachylyte generation veins are mostly sub-parallel to C-planes and the injection veins cross-cut at high angle to these. The presence of an isotropic glassy matrix, injection features, corroded grains and dendritic microlites can be evidences for the existence of a melt phase. The composition of pseudotachylyte matrix (by EPMA) indicates silica deficiency with higher normative hypersthene, plagioclase and lower quartz compared with average whole rock composition for host. Absence of overprinting of mylonitic fabric on pseudotachylytes indicates their formation by brittle failure without passing through a plastic deformation and thus a two stage development for mylonite-ultramylonite and pseudotachylyte generation is suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, A.R. (1979) Mechanism of frictional fusion in fault zones. Jour. Struct. Geol., v.55, pp.239–256.

    Google Scholar 

  • Allen, J.L. (2005) A multi-kilometre pseudotachylyte system as an exhumed record of earthquake rupture geometry at hypocentral depths (Colorado, USA) Tectonophysics, v.402, pp.37–54.

    Article  Google Scholar 

  • Bhattacharya, A., Mohanty, L., Maji, A., Sen, S.K. and Raith, M. (1992) Non-ideal mixing in the phlogopite-annite binary: constraints from experimental data on Mg-Fe partitioning and a reformulation of the biotite-garnet geothermometer. Contrib. Mineral. Petrol., v.111, pp.87–93.

    Article  Google Scholar 

  • Bossiere, G. (1991) Petrology of pseudotachylytes from the Alpine fault of New Zealand. Tectonophysics, v.196, pp.173–193.

    Article  Google Scholar 

  • Burlini, L. and Bruhn, D. (2005) High-strain zones: laboratory perspectives on strain softening during ductile deformation. Geol. Soc. London, v.245, pp.1–24.

    Article  Google Scholar 

  • Camacho, A., Vernon, R.H. and Fitzgerald, J.D. (1995) Large volumes of anhydrous pseudotachylyte in the Woodroffe Thrust, eastern Musgrave Ranges, Australia. Jour. Struct. Geol., v.17, pp.371–383.

    Article  Google Scholar 

  • Chattopadhyay, A., Khasdeo, L., Holdsworth, R.E. and Smith, S.A.F. (2008) Fault reactivation and pseudotachylite generation in the semi-brittle and brittle regimes: examples from the Gavilgarh-Tan Shear Zone, Central India. Geol. Mag., v.145(6), pp.766–777.

    Article  Google Scholar 

  • Chetty, T.R.K. (2001) The Eastern Ghats Mobile Belt, India: a collage of juxtaposed terranes (?). Gondwana Res., v.4, pp.319–328.

    Article  Google Scholar 

  • Chetty, T.R.K. (2007) Crustal architecture of the northern parts of the Eastern Ghats Mobile Belt, India: Correlation with Lambert rift. Intl. Assoc. for Gondwana Res., Conference Series No.4, pp.27–28.

  • Chetty, T.R.K. and Murthy, D.S.N. (1998) Regional tectonic framework of the Eastern Ghats Mobile Belt: a new interpretation. Geol. Surv. India Spec. Publ., No.44, pp.39–50.

  • Clough, C.T. (1888) The geology of the Cheviot Hills: England and Wales. In: Geol. Surv. Mem., Explanation of Sheet 108 NE, 22.

  • Dasgupta, S., Sengupta, P., Guha, D. and Fukuoka, M. (1991) A refined garnet-biotite Fe-Mg exchange geothermometer and its application in amphibolites and granulites. Contrib. Mineral. Petrol., v.109, pp.130–137.

    Article  Google Scholar 

  • Dobmeier, C.J. and Raith, M.M. (2003) Crustal architecture and evolution of the Eastern Ghats Belt and adjacent regions of India. Geol. Soc. London Spec. Publ. no.206, pp.145–168.

  • Grocott, J. (1981) Fracture geometry of pseudotachylite generation zones: a study of shear fractures formed during seismic events. Jour. Struct. Geol., v.3, pp.169–178.

    Article  Google Scholar 

  • Jeffreys, H. (1942) On the mechanics of faulting. Geol. Mag., v.79, pp.291–295.

    Article  Google Scholar 

  • Lapworth, C. (1885) The Highland controversy in British geology. Nature, v.32, pp.558–559.

    Google Scholar 

  • Legros, F., Cantagrel, J.M. and Devouard, B. (2000) Pseudotachylyte (frictionite) at the base of the Arequipa volcanic landslide deposit (Peru): implications for emplacement mechanisms. Jour. Geol., v.108, pp.601–611.

    Article  Google Scholar 

  • Lisker, F. and Fachmann, S. (2001) The Phanerozoic history of the Mahanadi region, India. Jour. Geophy. Res., B: Solid Earth, v.106, pp.22027–22050.

    Article  Google Scholar 

  • Lund, M.G. and Austrheim, H. (2003) High-pressure metamorphism and deep-crustal seismicity: evidence from contemporaneous formation of pseudotachylytes and eclogite facies coronas. Tectonophysics, v.379, pp.59–83.

    Article  Google Scholar 

  • Maddock, R.H. (1983) Melt origin of pseudotachylites demonstrated by textures. Geology, v.11, pp.105–108.

    Article  Google Scholar 

  • Maddock, R.H. (1992) Effects of lithology, cataclasis and melting on the composition of fault-generated pseudotachylytes in Lewisian gneiss, Scotland. Tectonophysics, v.204, pp.261–278.

    Article  Google Scholar 

  • Maddock, R.H., Grocott, J. and Van Ness, M. (1987) Vesicles, amygdales, and other similar structures in fault-generated pseudotachylites. Lithos, v.20, pp.418–432.

    Article  Google Scholar 

  • Magloughlin, J.F. (1989) The nature and significance of pseudotachylite from the Nason terrane, North Cascade mountains, Washington. Jour. Struct. Geol., v.11, pp.907–917.

    Article  Google Scholar 

  • Magloughlin, J.F. (1992) Microstructural and chemical changesassociated with cataclasis and frictional melting at shallowcrustal levels: the cataclasite-pseudotachylyte connection. Tectonophysics, v.204, pp.243–260.

    Article  Google Scholar 

  • Magloughlin, J.F. and Spray, J.G. (1992) Frictional Melting Processes and Products in Geological Materials: Introduction and Discussion; Tectonophysics, v.204, pp.56–78.

    Google Scholar 

  • Mahapatro, S.N., Nanda, J.K., Ghosh, S.P. and Tripathy, A.K. (2009) Patchy charnockitess from the Eastern Ghats Mobile Belt — examples from Titilagarh and Khandapara areas of Orissa. Vistas in Geological Research (Utkal Univ.), Spec. Publ. in Geol., v.8, pp.190–197.

    Google Scholar 

  • Masch, L., Wenk, H.R. and Preuss, E. (1985) Electron microscopy study of hyalomylonites — evidence for frictional melting in landslides. Tectonophysics, pp.115, v.131–160.

    Google Scholar 

  • Mishra, S.N. and Udhoji S.G., Unpublished GSI report, 1969–70.

  • Nanda, J.K. (2008) Tectonic framework of Eastern Ghats Mobile Belt: An overview. Mem. Geol. Soc. India, No.74, pp.63–87.

  • Nanda, J.K. and Pati, U.C. (1989) Filed relations and petrochemistry of the granulites and associated rocks in the Ganjam-Koraput sector of the Eastern Ghat belt. Indian Minerals, v.43(3&4), pp.247–264.

    Google Scholar 

  • Nash, C.R., Rankin, L.R. Leeming, P.M. and Harris, L.B. (1996) Delineation of lithostructural domains in northern Orissa (India) from Landsat Thematic Mapper imagery. Tectonophysics, v.260, pp.245–257.

    Article  Google Scholar 

  • O’Hara, K. and Sharp, Z.D. (2001) Chemical and oxygen isotope composition of natural and artificial pseudotachylyte: role of water during frictional melting. Earth Planet. Sci. Lett., v.184, pp.393–406.

    Article  Google Scholar 

  • Passchier, C.W. (1982) Pseudotachylyte and the development of ultramylonite bands in the Saint-Barthélemy Massif, French Pyrenees. Jour. Struct. Geol., v.4, pp.69–79.

    Article  Google Scholar 

  • Passchier, C.W. and Trouw, R.A. (2005) Microtectonics. Second Edition, Springer, 366p.

  • Passchier, C.W., Hoek, J.D., Bekendam, R.F. and De Boorder, H. (1990) Ductile reactivation of Proterozoic brittle fault rocks; an example from the Vestfold Hills, East Antarctica. Precambrian Res., v.47, pp.3–16.

    Article  Google Scholar 

  • Pennacchionni, G., Di Toro, G. and Mancktelow, N.S. (2001) Strain-insensitive preferred orientation of porphyroclasts in Mont Mary mylonites. Jour. Struct. Geol., v.23(8), pp.1281–1298.

    Article  Google Scholar 

  • Ramakrishnan, M., Nanda, J.K. and Augustine, P.F. (1998) Geological evolution of the Proterozoic Eastern Ghats Mobile Belt. In: Proc. Workshop on Eastern Ghats Mobile Belt. Geol. Surv. India Spec. Publ. No.44, pp.1–21.

  • Ramsay, J.G. and Lisle, R.J. (2000), The Techniques of Modern Structural Geology, vol.3, Applications of Continuum Mechanics in Structural Geology, Academic Press, London, pp.702–717.

    Google Scholar 

  • Rickers, K., Mezger, K. and Raith, M. (2001) Evolution of the continental crust in the Proterozoic Eastern Ghats Belt, India and new constraints for Rodinia reconstruction: implications from Sm-Nd, Rb-Sr and Pb-Pb isotopes. Precambrian Res., v.112, pp.183–210.

    Article  Google Scholar 

  • Roy, A. Sengupta, S. and Mandal, A. (2008) Synchronous development of mylonite and pseudotachylite in Ductile Shear Zone: An example from the Chitradurga Eastern Margin Shear Zone, Karnataka. Jour. Geol. Soc. India, v.72, pp.447–457.

    Google Scholar 

  • Roy Chowdhury, S. and Choudhary, R.K. (1963–64) Unpubld. Geol. Surv. India Report, FS:1963-64.

  • Scholz, C.H. (1990) The Mechanics of Earthquakes and Faulting. Cambridge University Press. 439p.

  • Scott, J.S. and Drever, H.I. (1953) Frictional fusion along a Himalayan thrust. Proc. Royal Soc. Edinburgh, v.65, pp.121–142.

    Google Scholar 

  • Sen, S.K. (1987) Origin of leptynites, an orthopyroxene-free granite gneiss in two granulite terranes of India. Recent researches in Geology. In: A. K. Saha (Ed.), Geological Evolution of Peninsular India, Petrological and Structural aspects. Hindusthan Pub., v.13, pp.117–124.

  • Seth, B.K. (1962–63) Unpubld. Geol. Surv. India Report, FS:1962-63

  • Shand, S.J. (1916) The pseudotachylite of Parijs (Orange Free State). Geol. Soc. London Quart. Jour., v.72, pp.198–221.

    Article  Google Scholar 

  • Sibson, R.H. (1975) Generation of pseudotachylite by ancient seismic faulting. Geophys. Jour. Royal Astron. Soc., v.43, pp.775–794.

    Google Scholar 

  • Sibson, R.H. (1980) Power dissipation and stress levels on faults in the upper crust. Jour. Geophys. Res., v.85, pp.6239–6249.

    Article  Google Scholar 

  • Spray, J.G. (1992) A physical basis for the frictional melting of some rock-forming minerals. Tectonophysics, v.204, pp.205–221.

    Article  Google Scholar 

  • Spray, J.G. (1993) Viscosity determinations of some frictionally generated silicate melts: implication for fault zone rheology at high strain rates. Jour. Geophys. Res., v.98, pp.8053–8068.

    Article  Google Scholar 

  • Spray, J.G. (1995) Pseudotachylyte controversy: fact or friction? Geology, v.23, pp.1119–1122.

    Article  Google Scholar 

  • Thompson, L.M. and Spray, J.G. (1994) Pseudotachylytic rock distribution in the Sudbury impact structure. Spec. Publ. Geol. Soc. Amer., v.293, pp.75–287.

    Google Scholar 

  • Spray, J.G. and Thompson, L.M. (1995) Friction melt distribution in a multi-ring impact basin. Nature, v.373, pp.130–132.

    Article  Google Scholar 

  • Swanson, M.T. (1992) Fault structure, wear mechanisms and rupture processes in pseudotachylyte generation. Tectonophysics, v.204, pp.223–242.

    Article  Google Scholar 

  • Takagi, H., Goto, K. and Shigematsu, N. (2000) Ultramylonite bands derived from cataclasite and pseudotachylite in granites, northeast Japan. Jour. Struct. Geol., v.22, pp.1325–1339.

    Article  Google Scholar 

  • Toyoshima, T. (1990) Pseudotachylite from the main zone of the Hidaka metamorphic belt, Hokkaido, northern Japan, Jour. Meta. Geol., v.8, pp.507–523.

    Article  Google Scholar 

  • Wenk, H.R. (1978) Are pseudotachylites products of fracture or fusion? Geology, v.6, pp.507–511.

    Article  Google Scholar 

  • Wenk, H.R., Johnson, L.R. and Rarschbacher, L. (2000) Pseudotachylites in the Eastern Peninsular Ranges of California. Tectonophysics, v.321, pp.253–277.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Mahapatro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahapatro, S.N., Tripathy, A.K., Nanda, J.K. et al. Coexisting ultramylonite and pseudotachylyte from the eastern segment of the Mahanadi shear zone, Eastern Ghats Mobile Belt. J Geol Soc India 74, 679–689 (2009). https://doi.org/10.1007/s12594-009-0184-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-009-0184-8

Keywords

Navigation