Skip to main content
Log in

Local and Global Bifurcations in a Mechanochemical ODE Model for Cell Behavior

  • Original Research
  • Published:
Differential Equations and Dynamical Systems Aims and scope Submit manuscript

Abstract

We study the dynamics of a two-variable mechanochemical model for GTPase signaling and cell tension using numerical bifurcation analysis, providing insight to the dynamics throughout parameter space. The model exhibits a wide range of local and global bifurcations, including three codimension-two bifurcations occurring along a locus of homoclinics. We use numerical bifurcation analysis and simulation to investigate these bifurcations. This analysis provides evidence for two rarely seen bifurcations: a neutral saddle homoclinic bifurcation and a non-central saddle-node homoclinic bifurcation. We expand the understanding of the dynamics of the mechanochemical model and provide a pedagogically useful example of a realistic but relatively simple model that exhibits a wide range of bifurcations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All code used to produce the figures is available as a GitHub repository at https://www.github.com/zmurchok/GTPase-tension-bifurcation.

References

  1. Bazykin AD: Nonlinear dynamics of interacting populations. World Scientific Series on Nonlinear Science. Series A: Monographs and Treatises, vol 11. World Scientific Publishing Co., Inc., River Edge, NJ. (1998). https://doi.org/10.1142/9789812798725

  2. Bui, J., Conway, D.E., Heise, R.L., Weinberg, S.H.: Mechanochemical coupling and junctional forces during collective cell migration. Biophys. J . 117(1), 170–183 (2019). https://doi.org/10.1016/j.bpj.2019.05.020

    Article  Google Scholar 

  3. Champneys, A.R., Kuznetsov, Y.A., Sandstede, B.: A numerical toolbox for homoclinic bifurcation analysis. Int. J. Bifurcation Chaos 5, 867–887 (1996). https://doi.org/10.1142/S0218127496000485

    Article  MathSciNet  MATH  Google Scholar 

  4. Chay, T.R., Cook, D.L.: Endogenous bursting patterns in excitable cells. Math. Biosci. 90(1–2), 139–153 (1988). https://doi.org/10.1016/0025-5564(88)90062-4

    Article  MathSciNet  Google Scholar 

  5. Chow, S.N., Lin, X.B.: Bifurcation of a homoclinic orbit with a saddle-node equilibrium. Differ. Integral Equ. 3(3), 435–466 (1990)

    MathSciNet  MATH  Google Scholar 

  6. Chow, S.N., Deng, B., Fiedler, B.: Homoclinic bifurcation at resonant eigenvalues. J. Dyn. Differ. Equ. 2(2), 177–244 (1990). https://doi.org/10.1007/bf01057418

    Article  MathSciNet  MATH  Google Scholar 

  7. Deng, B.: Homoclinic bifurcations with nonhyperbolic equilibria. SIAM J. Math. Anal. 21(3), 693–720 (1990). https://doi.org/10.1137/0521037

    Article  MathSciNet  MATH  Google Scholar 

  8. Dhooge, A., Govaerts, W., Kuznetsov, Y.A., Meijer, H.G., Sautois, B.: New features of the software MatCont for bifurcation analysis of dynamical systems. Math. Comput. Model. Dyn. Syst. 14(2), 147–175 (2008). https://doi.org/10.1080/13873950701742754

    Article  MathSciNet  MATH  Google Scholar 

  9. Farjami, S., Kirk, V., Osinga, H.M.: Transient spike adding in the presence of equilibria. European Phys. J. Special Topics 225(13), 2601–2612 (2016). https://doi.org/10.1063/1.4826655

    Article  Google Scholar 

  10. Friedman, M., Govaerts, W., Kuznetsov, Y.A., Sautois, B.: Continuation of homoclinic orbits in Matlab. In: Lecture Notes in Computer Science, pp. 263–270. Springer, Berlin, Heidelberg (2005). https://doi.org/10.1007/11428831_33

    Chapter  MATH  Google Scholar 

  11. Govaerts, W., Sautois, B.: The onset and extinction of neural spiking: a numerical bifurcation approach. J. Comput. Neurosci. 18(3), 265–274 (2005). https://doi.org/10.1007/s10827-005-0328-9

    Article  MathSciNet  Google Scholar 

  12. Govaerts W, Witte VD, Kheibarshekan L: Using MatCont in a two-parameter bifurcation study of models for cell cycle controls. In: Volume 4: 7th International Conference on Multibody Systems, Nonlinear Dynamics, and Control, Parts A, B and C. ASMEDC. (2009). https://doi.org/10.1115/detc2009-86185

  13. Holmes, W.R., Edelstein-Keshet, L.: Analysis of a minimal Rho-GTPase circuit regulating cell shape. Phys. Biol. 13(4), 046001 (2016). https://doi.org/10.1088/1478-3975/13/4/046001

    Article  Google Scholar 

  14. Homburg, A.J., Sandstede, B.: Homoclinic and heteroclinic bifurcations in vector fields. In: Handbook of Dynamical Systems, pp. 379–524. Elsevier, Amsterdam (2010). https://doi.org/10.1016/s1874-575x(10)00316-4

    Chapter  Google Scholar 

  15. Hoppensteadt, F.C., Izhikevich, E.M.: Bifurcations in neuron dynamics. In: Weakly Connected Neural Networks, pp. 25–101. Springer, New York (1997). https://doi.org/10.1007/978-1-4612-1828-9_2

    Chapter  Google Scholar 

  16. Izhikevich, E.M.: Neural excitability, spiking and bursting. Int. J. Bifurc. Chaos 10(06), 1171–1266 (2000). https://doi.org/10.1142/s0218127400000840

    Article  MathSciNet  MATH  Google Scholar 

  17. Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory. Springer, Newyork (2004). https://doi.org/10.1007/978-1-4757-3978-7

    Book  MATH  Google Scholar 

  18. Leontovich, E.: On the generation of limit cycles from separatrices. Doklady Akad. Nauk SSSR (NS) 78, 641–644 (1951)

    MathSciNet  Google Scholar 

  19. Levi, M., Hoppensteadt, F.C., Miranker, W.L.: Dynamics of the Josephson junction. Q. Appl. Math. 36(2), 167–198 (1978). https://doi.org/10.1090/qam/484023

    Article  MathSciNet  Google Scholar 

  20. Link, P.A., Heise, R.L., Weinberg, S.H.: Cellular mitosis predicts vessel stability in a mechanochemical model of sprouting angiogenesis. Biomech. Model. Mechanobiol. (2021). https://doi.org/10.1007/s10237-021-01442-8

    Article  Google Scholar 

  21. Liu, C., Liu, X., Liu, S.: Bifurcation analysis of a Morris-Lecar neuron model. Biol. Cybern. 108(1), 75–84 (2014). https://doi.org/10.1007/s00422-013-0580-4

    Article  MathSciNet  Google Scholar 

  22. Lukyanov, V.I.: Bifurcations of dynamical systems with “saddle-node” separatrix loops. Differentsial’nye Uravneniya 18(9), 1493–1506 (1982)

    MathSciNet  Google Scholar 

  23. Mori, Y., Jilkine, A., Edelstein-Keshet, L.: Wave-pinning and cell polarity from a bistable reaction-diffusion system. Biophys. J . 94(9), 3684–3697 (2008). https://doi.org/10.1529/biophysj.107.120824

    Article  Google Scholar 

  24. Morris, C., Lecar, H.: Voltage oscillations in the barnacle giant muscle fiber. Biophys. J . 35(1), 193–213 (1981). https://doi.org/10.1016/s0006-3495(81)84782-0

    Article  Google Scholar 

  25. Nozdracheva, V.: Bifurcations of a structurally unstable separatrix loop. Differentsial’nye Uravneniya 18(9), 1551–1558 (1982)

    MathSciNet  MATH  Google Scholar 

  26. Rajagopal, V., Holmes, W.R., Lee, P.V.S.: Computational modeling of single-cell mechanics and cytoskeletal mechanobiology. Wiley Interdiscip. Rev. Syst. Biol. Med. 10(2), e1407 (2017). https://doi.org/10.1002/wsbm.1407

    Article  Google Scholar 

  27. Ridley, A.J.: Rho family proteins coordinating cell responses. Trends Cell Biol. 11(12), 471–477 (2001). https://doi.org/10.1016/S0962-8924(01)02153-5

    Article  Google Scholar 

  28. Schecter, S.: The saddle-node separatrix-loop bifurcation. SIAM J. Math. Anal. 18(4), 1142–1156 (1987). https://doi.org/10.1137/0518083

    Article  MathSciNet  MATH  Google Scholar 

  29. Tambyah, T.A., Murphy, R.J., Buenzli, P.R., Simpson, M.J.: A free boundary mechanobiological model of epithelial tissues. Proc. Royal Soci. A Math. Phys. Eng. Sci. 476(2243), 20200528 (2020). https://doi.org/10.1098/rspa.2020.0528

    Article  MathSciNet  MATH  Google Scholar 

  30. Tsaneva-Atanasova, K., Osinga, H.M., Rieß, T., Sherman, A.: Full system bifurcation analysis of endocrine bursting models. J. Theor. Biol. 264(4), 1133–1146 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Wilson, H.R., Cowan, J.D.: Excitatory and inhibitory interactions in localized populations of model neurons. Biophys. J . 12(1), 1–24 (1972). https://doi.org/10.1016/s0006-3495(72)86068-5

    Article  Google Scholar 

  32. Zmurchok, C., Bhaskar, D., Edelstein-Keshet, L.: Coupling mechanical tension and GTPase signaling to generate cell and tissue dynamics. Phys. Biol. 15(4), 046004 (2018). https://doi.org/10.1088/1478-3975/aab1c0

    Article  Google Scholar 

Download references

Acknowledgements

CZ was partially supported by a Postdoctoral Fellowship Award from the Natural Sciences and Engineering Research Council (NSERC) of Canada and by a National Science Foundation (NSF), United States grant DMS1562078. MS was supported by an Undergraduate Student Research Award (USRA) from NSERC of Canada. WN and ENC are supported by NSERC of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cole Zmurchok.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (mp4 403 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zmurchok, C., Sahota, M., Nagata, W. et al. Local and Global Bifurcations in a Mechanochemical ODE Model for Cell Behavior. Differ Equ Dyn Syst (2023). https://doi.org/10.1007/s12591-023-00636-z

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s12591-023-00636-z

Keywords

Navigation