Skip to main content
Log in

Chaos Synchronization of a New Chaotic System Having Exponential Term Via Adaptive and Sliding Mode Control

  • Original Research
  • Published:
Differential Equations and Dynamical Systems Aims and scope Submit manuscript

Abstract

In this paper, we have introduced a new three-dimensional system having exponential term. The chaotic nature of the system is analysed by examining the Lyapunov exponents, graphing the phase portraits, time series of state vectors, bifurcation diagram, and Poincare maps. The novel system has three equilibrium points and it is discussed that all equilibrium points are unstable in nature. The two schemes of adaptive control and sliding mode control for chaos synchronization have been discussed for the novel chaotic system. Suitable nonlinear controllers have been designed in both adaptive control and sliding mode control methods to achieve the desired synchronization between identical chaotic systems by using the Lyapunov stability theory and Vaidyanathan’s theorem. Numerical simulations have been performed and the graphs are presented using MATLAB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Availability of data and materials

Not applicable.

Code availability

Not applicable.

References

  1. Azar, A.T., Vaidyanathan, S.: Chaos Modeling and Control Systems Design, Studies in Computational Intelligence, vol. 581. Springer, New York (2015)

    MATH  Google Scholar 

  2. Azar, A.T., Vaidyanathan, S.: Computational Intelligence Applications in Modeling and Control, Studies in Computational Intelligence, vol. 575. Springer, New York (2015)

    Google Scholar 

  3. Chua, L.O., Itoh, M., Kocarev, L., Eckert, K.: Chaos synchronization in Chua’s circuit. J. Circuits Syst. Comput. 3(1), 93–108 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  4. Yau, H.T., Pu, Y.C., Li, S.C.: Application of a chaotic synchronization system to secure communication. Inf. Technol. Control 41, 274–282 (2012)

    Google Scholar 

  5. Yeh, J.P., Wu, K.L.: A simple method to synchronize chaotic systems and its application to secure communications. Math. Comput. Model. 47, 894–902 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Alsafasfeh, Q.H., Arfoa, A.A.: Image encryption based on the general approach for multiple chaotic systems. J. Signal Inf. Process. 2, 238–244 (2011)

    Google Scholar 

  7. Potapov, A.B., Ali, M.K.: Nonlinear dynamics and chaos in information processing neural networks. Differ. Equ. Dyn. Syst. 9, 259–319 (2001)

    MathSciNet  MATH  Google Scholar 

  8. Vaidyanathan, S.: Sliding controller design for the global chaos synchronization of enzymes substrates systems. Int. J. PharmTech. Res. 8, 89–99 (2015)

    Google Scholar 

  9. Upadhyay, R., Rai, V.: Complex dynamics and synchronization in two non-identical chaotic ecological systems. Chaos Solutons Fractals 40(5), 2233–2241 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Laskin, N.: Fractional market dynamics. Phys. A Stat. Mech. Appl. 287(3–4), 482–492 (2000)

    Article  MathSciNet  Google Scholar 

  11. Turcotte, D.L.: Implications of chaos, scale-invariance, and fractal statistics in geology. Glob. Planet. Change 3(3), 301–308 (1990)

    Article  Google Scholar 

  12. Rana, P., Chaudhary, K., Chauhan, S., Marik, M., Jha, B.K. : Dynamic analysis of mother-to-child transmission of HIV and antiretroviral treatment as optimal control. Commun. Math. Biol. Neurosci. (2022). https://doi.org/10.28919/cmbn/7428

  13. Rana, P., Chauhan, S., Mubayi, A.: Burden of cytokines storm on prognosis of SARS-CoV-2 infection through immune response: dynamic analysis and optimal control with immunomodulatory therapy. Eur. Phys. J. Spec. Top. (2021). https://doi.org/10.1140/epjs/s11734-022-00435-7

    Article  Google Scholar 

  14. Jethanandani, H., Jha, A.: A Computational Model to Study the Effect of Amyloid Beta on Calcium Dynamics, vol. 1287. Springer, Singapore (2021). https://doi.org/10.1007/978-981-15-9953-8_26

  15. Shivam Kumar, M., Singh, T., Chauhan, S.: Positive effect of predator’s mortality in predator-prey system via turning patterns. Braz. J. Phys. (2022). https://doi.org/10.1007/s13538-022-01154-z

    Article  Google Scholar 

  16. Pecora, L.M., Carroll, T.L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64, 821–824 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  17. Yassen, M.T.: Chaos Synchronization between two different chaotic systems using active control. Chaos Solutons Fractals 23, 131–140 (2005)

    Article  MATH  Google Scholar 

  18. Li, G.-H.: Generalized projective synchronization of two chaotic systems by using active control. Chaos Solutons Fractals 30, 77–82 (2006)

    Article  MATH  Google Scholar 

  19. Bai, E., Lonngren, K.E.: Synchronization of two Lorenz systems using active control. Chaos Solutons Fractals 8, 51–58 (1997)

    Article  MATH  Google Scholar 

  20. Vaidyanathan, S.: Adaptive control of a chemical chaotic reactor. Int. J. PharmTech Res. 8, 377–382 (2015)

    Google Scholar 

  21. Sundarapandian, V., Pehlivan, I.: Analysis, control, synchronization, and circuit design of a novel chaotic system. Math. Comput. Model. 55, 1904–1915 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Vaidyanathan, S., Rajagopal, K., Volos, C.K., Kyprianidis, I.M., Stouboulos, I.N.: Analysis, adaptive control and synchronization of a seven-term novel 3-D chaotic system with three quadratic nonlinearities and its digital implementation in LabVIEW. J. Eng. Sci. Technol. Rev. 8(2), 130–141 (2015)

    Article  Google Scholar 

  23. Zhang, R., Yang, S.: Adaptive synchronization of fractional-order chaotic systems via a single driving variable. Nonlinear Dyn. 66, 831–837 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Odibat, Z.M.: Adaptive feedback control and synchronization of non-identical chaotic fractional order systems. Nonlinear Dyn. 60, 479–487 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Vaidyanathan, S., Kingni, S.T., Sambas, A., Mohamed, M.A., Mamat, M.: A new chaotic jerk system with three nonlinearities and synchronization via adaptive backstepping control. Int. J. Eng. Technol. 7(3), 1936–1943 (2018)

    Article  Google Scholar 

  26. Denga, K., Lib, J., Yu, S.: Dynamics analysis and synchronization of a new chaotic attractor. Optik 125, 3071–3075 (2014)

    Article  Google Scholar 

  27. Yu, Y., Zhang, S.: Adaptive backstepping synchronization of uncertain chaotic system. Chaos Solutons Fractals 21, 643–649 (2004)

    Article  MATH  Google Scholar 

  28. Rakkiyappan, R., Sivasamy, R., Li, X.: Synchronization of identical and nonidentical memristor-based chaotic systems via active backstepping control technique. Circuits Syst. Signal Process. 34, 763–778 (2015)

    Article  Google Scholar 

  29. Yassen, M.T.: Chaos control of chaotic dynamical systems using backstepping design. Chaos Solitons Fractals 27, 537–548 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  30. Bowong, S., Kakmeni, F.M.M.: Synchronization of uncertain chaotic systems via backstepping approach. Chaos Solitons Fractals 21, 999–1011 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  31. Vaidyanathan, S., Sampath, S., Azar, A. T.: Global chaos synchronization of identical chaotic systems via novel sliding mode control method and its application to Zhu system. Int. J. Model. Identif. Control. 23(2), 92–100 (2015). https://doi.org/10.1504/IJMIC.2015.067495

    Article  Google Scholar 

  32. Vaidyanathan, S.: Global chaos synchronization of chemical chaotic reactors via novel sliding mode control method. Int. J. ChemTech Res. 8, 209–221 (2015)

    Google Scholar 

  33. Hosseinnia, S.H., Ghaderi, R., Ranjbar, A., Mahmoudian, M., Momani, S.: Sliding mode synchronization of an uncertain fractional order chaotic system. Comput. Math. Appl. 59, 1637–1643 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  34. Guo, Q., Wan, F.: Complete synchronization of the global coupled dynamical network induced by Poisson noises. PLoS One 12, e0188632 (2017). https://doi.org/10.1371/journal.pone.0188632

    Article  Google Scholar 

  35. Kim, C., Rim, S., Kye, W., Ryu, J., Park, Y.: Anti-synchronization of chaotic oscillators. Phys. Lett. A 320(1), 39–46 (2003). https://doi.org/10.1016/j.physleta.2003.10.051

    Article  MathSciNet  MATH  Google Scholar 

  36. Sudheer, K., Sabir, M.: Hybrid synchronization of hyperchaotic Lu system. Pramana 73(4), 781–786 (2009). https://doi.org/10.1007/s12043-009-0145-1

    Article  MATH  Google Scholar 

  37. Khan, A., Khattar, D., Agrawal, N.: Hybrid projective synchronization between the fractional order systems. J. Math. Comput. Sci. 8(2), 253–269 (2018)

    Google Scholar 

  38. Ho, M., Hung, Y.C., Chou, C.: Phase and anti-phase synchronization of two chaotic systems by using active control. Phys. Lett. A 296(1), 43–48 (2002). https://doi.org/10.1016/S0375-9601(02)00074-9

    Article  MATH  Google Scholar 

  39. Du, H., Zeng, Q., Wang, C., Ling, M.: Function projective synchronization in coupled chaotic systems. Nonlinear Anal. Real World Appl. 11(2), 705–712 (2010). https://doi.org/10.1016/j.nonrwa.2009.01.016

    Article  MathSciNet  MATH  Google Scholar 

  40. Shahverdiev, E., Sivaprakasam, S., Shore, K.: Lag synchronization in time-delayed systems. Phys. Lett. A 292(6), 320–324 (2002). https://doi.org/10.1016/S0375-9601(01)00824-6

    Article  MATH  Google Scholar 

  41. Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A.: Determining Lyapunov exponents from a time series. Phys. D Nonlinear Phenom. 16, 285–317 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  42. Hahn, W.: The Stability of Motion. Springer, New York (1967)

    Book  MATH  Google Scholar 

  43. Vaidyanathan, S., Sampath, S., Azar, A.T.: Global chaos synchronisation of identical chaotic systems via novel sliding mode control method and its application to Zhu system. Int. J. Model. Identif. Control 23, 92–100 (2015)

    Article  Google Scholar 

  44. Vaidyanathan, S.: Global chaos synchronisation of identical Li-Wu chaotic systems via sliding mode control. Int. J. Model. Identif. Control 22, 170–177 (2014)

    Article  Google Scholar 

  45. Wang, Z., Song, C., Yan, A., Wang, G.: Complete synchronization and partial anti-synchronization of complex Lu chaotic systems by the UDE-based control method. Symmetry (2022). https://doi.org/10.3390/sym14030517

    Article  Google Scholar 

  46. Wei, X., Zhang, Z., Lin, C., Chen, J.: Synchronization and anti-synchronization for complex-valued inertial neural networks with time-varying delays. Appl. Math. Comput. (2021). https://doi.org/10.1016/j.amc.2021.126194

    Article  MathSciNet  MATH  Google Scholar 

  47. Chaudhary, H., Khan, A., Sajid, M.: An investigation on microscopic chaos controlling of identical chemical reactor system via adaptive controlled hybrid projective synchronization. Eur. Phys. Spec. Top. 231, 453–463 (2022). https://doi.org/10.1140/epjs/s11734-021-00404-6

    Article  Google Scholar 

  48. Ibrahim, M.M., Kamran, M.A., Mannan, M.M.N., Jung, I.H., Kim, S.: Lag synchronization of coupled time-delayed FitzHugh-Nagumo neural networks via feedback control. Sci. Rep. (2021). https://doi.org/10.1038/s41598-021-82886-x

    Article  Google Scholar 

  49. Gulati, P., Chauhan, S., Mubayi, A., Singh, T., Rana, P.: Dynamical analysis, optimum control and pattern formation in the biological pest (EFSB) control model. Chaos Solitons Fractals 147 (2021). https://doi.org/10.1016/j.chaos.2021.110920

    Article  MathSciNet  MATH  Google Scholar 

  50. Barik, M., Swarup, C., Singh, T., Habbi, S., Chauhan, S.: Dynamical analysis, optimal control and spatial pattern in an influenza model with adaptive immunity in two stratified population. AIMS Math. 7(4), 4898–4935 (2022)

    Article  MathSciNet  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All authors of this manuscript contributed equally.

Corresponding author

Correspondence to Govind Singh.

Ethics declarations

Conflict of interest

There is no conflict of interest between the authors.

Ethics

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khattar, D., Agrawal, N. & Singh, G. Chaos Synchronization of a New Chaotic System Having Exponential Term Via Adaptive and Sliding Mode Control. Differ Equ Dyn Syst (2023). https://doi.org/10.1007/s12591-023-00635-0

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s12591-023-00635-0

Keywords

Mathematics Subject Classification

Navigation