Skip to main content
Log in

A General Existence Theorem and Asymptotics for Non-self-adjoint Sturm-Liouville Problems

  • Original Research
  • Published:
Differential Equations and Dynamical Systems Aims and scope Submit manuscript

Abstract

We prove a general existence theorem for non-self-adjoint Sturm-Liouville problems and we derive quite general asymptotic formulae for their eigenvalues and the corresponding eigenfunctions. The derived formulae are general, very accurate and remain valid for a large class of complex potentials with singularities. These results are obtained by using He’s homotopy perturbation method (HPM) with an auxiliary parameter. It will be shown that this method is easy to use and makes the study of these problems more simple and more efficient. In order to illustrate the theory, interesting asymptotic and numerical results are discussed and presented from a wide range of examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

ResearchGate at https://www.researchgate.net/publication/257290233_Computing_Eigenvalues_of_Singular_Sturm-Liouville_Problems or in Springer at https://doi.org/10.1007/BF03323182 (Bailey, P., Everitt, W., Zettl, A.: [32]). John D. Pryce: [33], Appendix A. ScienceDirect at https://doi.org/10.1016/S0893-9659(99)00111-1 (Chanane, B.: [34]).

References

  1. Courant, R.: Courant-Hilbert Methods of Mathematical Physics. Interscience, New York (1966)

    Google Scholar 

  2. Zettl, A.: Sturm-Liouville Theory, vol. 121. American Mathematical Soc, Washington (2010)

    MATH  Google Scholar 

  3. Liouville, J.: Second mémoire sur le développement des fonctions ou parties de fonctions en séries dont les divers termes sont assujétis à satisfaire à une même équation différentielle du second ordre, contenant un paramètre variable. J. Math. Pures Appl. 2, 16–35 (1837)

    Google Scholar 

  4. Everitt, W.N.: On the transformation theory of ordinary second-order linear symmetric differential expressions. Czechoslov. Math. J. 32(2), 275–306 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  5. Naimark, M.: Linear Differential Operators, Part 1. Frederick Ungar Publications, New York (1967)

    MATH  Google Scholar 

  6. Amrein, W.O., Hinz, A.M., Pearson, D.B.: Sturm-Liouville Theory: Past and Present. Springer, Berlin (2022)

    Google Scholar 

  7. Hochstadt, H.: Asymptotic estimates for the Sturm-Liouville spectrum. Commun. Pure Appl. Math. 14, 749–764 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fix, G.: Asymptotic eigenvalues of Sturm-Liouville systems. J. Math. Anal. Appl 19(3), 519–525 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fulton, C.T., Pruess, S.: Eigenvalue and eigenfunction asymptotics for regular Sturm-Liouville problems. J. Math. Anal. Appl 188(1), 297–340 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  10. Yilmaz, B., Veliev, O.: Asymptotic formulas for Dirichlet boundary value problems. Stud. Sci. Math. Hung. 42(2), 153–171 (2005)

    MathSciNet  MATH  Google Scholar 

  11. Atkinson, F., Mingarelli, A.: Asymptotics of the number of zeros and of the eigenvalues of general weighted Sturm-Liouville problems. J. Reine Angew. Math. 375, 380–393 (1987)

    MathSciNet  MATH  Google Scholar 

  12. Harris, B.: Asymptotics of eigenvalues for regular Sturm-Liouville problems. J. Math. Anal. Appl 183(1), 25–36 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  13. Duman, M.: Asymptotic expansions for the Sturm-Liouville problem by homotopy perturbation method. Appl. Math. Comput. 216(2), 492–496 (2010)

    MathSciNet  MATH  Google Scholar 

  14. Marasi, H., Khezri, E.: Asymptotic distributions of Neumann problem for Sturm-Liouville equation. Comput. Methods Differ. Equ 2(1), 19–25 (2014)

    MathSciNet  MATH  Google Scholar 

  15. Eastham, M.S.P.: The Spectral Theory of Periodic Differential Equations. Scottish Academic Press Ltd., Edinburgh (1973)

    MATH  Google Scholar 

  16. Coskun, H., Harris, B.: Estimates for the periodic and semi-periodic eigenvalues of Hill’s equation. Proc. Roy. Soc. Edinb. Sect. A 130(5), 991–998 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  17. Coşkun, H.: On the spectrum of a second-order periodic differential equation. Rocky Mt. J. Math. 33, 1261–1277 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Cheng, Y., Wang, T.-E., Wu, C.-J.: A note on eigenvalue asymptotics for Hill’s equation. Appl. Math. Lett. 23(9), 1013–1015 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Başkaya, E.: Periodic and semi-periodic eigenvalues of Hill’s equation with symmetric double well potential. TWMS J. App. Eng. Math. 10(2), 1–7 (2020)

    Google Scholar 

  20. Boyd, J.P.: Sturm-Liouville eigenproblems with an interior pole. J. Math. Phys. 22(8), 1575–1590 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  21. Atkinson, F., Everitt, W., Zettl, A.: Regularization of a Sturm-Liouville problem with an interior singularity using quasiderivatives. Differ. Integral Equ. 1(2), 213–221 (1988)

    MathSciNet  MATH  Google Scholar 

  22. Harris, B., Race, D.: Asymptotics of eigenvalues for Sturm-Liouville problems with an interior singularity. J. Differ. Equ. 116(1), 88–118 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hryniv, R.O., Mykytyuk, Y.V.: Eigenvalue asymptotics for Sturm-Liouville operators with singular potentials. J. Funct. Anal. 238(1), 27–57 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. He, J.-H.: Homotopy perturbation technique. Comput. Methods in Appl. Mech. Eng. 178(3–4), 257–262 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  25. He, J.-H.: Homotopy perturbation method: a new nonlinear analytical technique. Appl. Math. Comput. 135(1), 73–79 (2003)

    MathSciNet  MATH  Google Scholar 

  26. He, J.-H.: The homotopy perturbation method for nonlinear oscillators with discontinuities. Appl. Math. Comput. 151(1), 287–292 (2004)

    MathSciNet  MATH  Google Scholar 

  27. He, J.-H.: Homotopy perturbation method for solving boundary value problems. Phys. Lett. A 350(1), 87–88 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. Yıldırım, A.: Solution of BVPs for fourth-order integro-differential equations by using homotopy perturbation method. Comput. Math. with Appl. 56(12), 3175–3180 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. Tripathi, R., Mishra, H.K.: Application of homotopy perturbation method using Laplace transform intended for determining the temperature in the heterogeneous casting-mould system. Differ. Equ. Dyn. Syst. 30, 301–314 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kevkic, T., Stojanovic, V., Petkovic, D.: Solving Schrödinger equation for a particle in one-dimensional lattice: an homotopy perturbation approach. Rom. Rep. Phys. (2019)

  31. Yu, D. -N., He, J. -H., Garcıa, A. G.: Homotopy perturbation method with an auxiliary parameter for nonlinear oscillators. J. Low Freq. Noise Vib. Act. Control 38(3–4), 1540–1554 (2019)

    Article  Google Scholar 

  32. Bailey, P., Everitt, W., Zettl, A.: Computing eigenvalues of singular Sturm-Liouville problems. Results Math. 20(1–2), 391–423 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  33. Pryce, J.D.: Numerical Solution of Sturm-Liouville Problems. Oxford University Press, Oxford (1993)

    MATH  Google Scholar 

  34. Chanane, B.: Computing eigenvalues of regular Sturm-Liouville problems. Appl. Math. Lett. 12(7), 119–125 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  35. Attili, B.S.: The adomian decomposition method for computing eigenelements of Sturm-Liouville two point boundary value problems. Appl. Math. Comput. 168(2), 1306–1316 (2005)

    MathSciNet  MATH  Google Scholar 

  36. Chanane, B.: Computing the spectrum of non-self-adjoint Sturm-Liouville problems with parameter-dependent boundary conditions. J. Comput. Appl. Math. 206(1), 229–237 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  37. Altıntan, D., Uğur, Ö.: Variational iteration method for Sturm-Liouville differential equations. Comput. Math. Appl. 58(2), 322–328 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  38. Jafari, M., Aminataei, A.: Homotopy perturbation method for computing eigenelements of Sturm-Liouville two point boundary value problem. Appl. Math. Sci. 3(31), 1519–1524 (2009)

    MathSciNet  MATH  Google Scholar 

  39. Atay, M.T., Kartal, S.: Computation of eigenvalues of Sturm-Liouville problems using homotopy perturbation method. Int. J. Nonlinear Sci. Numer. Simul. 11(2), 105–112 (2010)

    MathSciNet  MATH  Google Scholar 

  40. Neamaty, A., Darzi, R.: Comparison between the variational iteration method and the homotopy perturbation method for the Sturm-Liouville differential equation. Bound. Value Probl. 2010, 1–14 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  41. Irandoust-pakchin, S., Ahmadian, D.: Homotopy analysis method for computing eigenvalues of Sturm-Liouville problems. Int. J. Nonlinear Sci. 19(2), 100–106 (2015)

    MathSciNet  MATH  Google Scholar 

  42. Ganji, D., Sahouli, A., Famouri, M.: A new modification of He’s homotopy perturbation method for rapid convergence of nonlinear undamped oscillators. J. Appl. Math. Comput. 30(1), 181–192 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  43. Adamu, M., Ogenyi, P.: Parameterized homotopy perturbation method. Nonlinear Sci. Lett. A 8(2), 240–243 (2017)

    Google Scholar 

  44. Koshy, T.: Catalan Numbers with Applications. Oxford University Press, Oxford (2008)

    Book  MATH  Google Scholar 

  45. Everitt, W.N.: A Catalogue of Sturm-Liouville Differential Equations, pp. 271–331. Springer, Berlin (2022)

    MATH  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noureddine Frimane.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frimane, N., Attioui, A. A General Existence Theorem and Asymptotics for Non-self-adjoint Sturm-Liouville Problems. Differ Equ Dyn Syst (2023). https://doi.org/10.1007/s12591-022-00627-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12591-022-00627-6

Keywords

MSC Classification

Navigation