Skip to main content
Log in

Exponential Basis Approximated Fuzzy Components High-Resolution Compact Discretization Technique for 2D Convection–Diffusion Equations

  • Original Research
  • Published:
Differential Equations and Dynamical Systems Aims and scope Submit manuscript

Abstract

This article examines a compact scheme employing fuzzy transform via exponential basis to solve nonlinear stationary convection–diffusion equations. The scheme executes approximated fuzzy components which estimate the solution values with fourth-order accuracy in an optimal computing time. Such an arrangement associates the approximated fuzzy components with solution values by a linear system. The Jacobian matrices in the scheme are monotone and irreducible. The proof of convergence is briefly discussed. Numerical simulations with nonlinear and linear convection–diffusion equations occurring in quantum mechanics and rheological Carreau fluid will be examined to corroborate the new scheme's utility and efficiency of computational convergence order.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and material

Not applicable.

References

  1. Perfilieva, I., Števuliáková, P., Valášek, R.: F-transform-based shooting method for nonlinear boundary value problems. Soft Comput. 21, 3493–3502 (2017)

    Article  MATH  Google Scholar 

  2. Khastan, A., Alijani, Z., Perfilieva, I.: Fuzzy transform to approximate solution of two-point boundary value problems. Math. Methods Appl. Sci. 40, 6147–6154 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  3. Khastan, A., Perfilieva, I., Alijani, Z.: A new fuzzy approximation method to Cauchy problems by fuzzy transform. Fuzzy Set. Syst. 288, 75–95 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, W., Shen, Y.: Approximate solution for a class of second-order ordinary differential equations by the fuzzy transform. J. Intell. Fuzzy Syst. 27, 73–82 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Perfilieva, I.: Fuzzy transforms: theory and applications. Fuzzy Set. Syst. 157, 993–1023 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Stepnicka, M., Valasek, R.: Numerical solution of partial differential equations with help of fuzzy transform. In: The 14th IEEE International Conference on Fuzzy Systems, FUZZ'05 IEEE, pp. 1104–1109 (2005)

  7. Yang, Y., Hou, M., Sun, H., Zhang, T., Weng, F., Luo, J.: Neural network algorithm based on Legendre improved extreme learning machine for solving elliptic partial differential equations. Soft Comput. 24, 1083–1096 (2020)

    Article  MATH  Google Scholar 

  8. Yunlei, Y., Muzhou, H., Jianshu, L., Zhongchu, T.: Numerical solution of several kinds of differential equations using block neural network method with improved extreme learning machine algorithm. J. Intell. Fuzzy Syst. 38, 3445–3461 (2020)

    Article  Google Scholar 

  9. Jha, N., Kumar, N.: A fourth-order accurate quasi-variable meshes compact finite-difference scheme for two-space dimensions convection-diffusion problems. Adv. Differ. Equ. 64, 1–13 (2017)

    Google Scholar 

  10. Jha, N., Kumar, N.: An exponential expanding meshes sequence and finite difference method adopted for two-dimensional elliptic equations. Int. J. Model. Simul. Sci. Comput. 7, 1–17 (2016)

    Article  Google Scholar 

  11. Lu, K., Liu, L., Fang, H., Liu, L.: A dual mutation differential evolution algorithm for singularly perturbed problems with two small parameters. J. Intell. Fuzzy Syst. 36, 6579–6587 (2019)

    Article  Google Scholar 

  12. Babu, G., Prithvi, M., Sharma, K.K., Ramesh, V.P.: A uniformly convergent numerical algorithm on harmonic (H(ℓ)) mesh for parabolic singularly perturbed convection-diffusion problems with boundary layer. Differ. Equ. Dyn. Syst. (2022). https://doi.org/10.1007/s12591-021-00585-5

    Article  MATH  Google Scholar 

  13. Chakravarthy, P.P., Kumar, K.: A novel method for singularly perturbed delay differential equations of reaction-diffusion type. Differ. Equ. Dyn. Syst. 29, 723–734 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  14. Zhang, J., Kouatchou, J., Ge, L.: A family of fourth-order difference schemes on rotated grid for two-dimensional convection-diffusion equation. Math. Comput. Simul. 59, 413–429 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Tomás, R.: Nonlinear Partial Differential Equations with Applications. Birkhũser-Verlag (2005)

  16. Bassanini, P., Elcrat, A.R.: Theory and Applications of Partial Differential Equations. Springer, Berlin (2013)

    MATH  Google Scholar 

  17. ur Rahman, M., Arfan, M., Shah, K., Gómez-Aguilar, J.F.: Investigating a nonlinear dynamical model of COVID-19 disease under fuzzy caputo, random and ABC fractional order derivative. Chaos Solitons Fractals 140, 110232 (2020). (1–24)

    Article  MathSciNet  MATH  Google Scholar 

  18. Shah, K., Seadawy, A.R., Arfan, M.: Evaluation of one dimensional fuzzy fractional partial differential equations. Alex. Eng. J. 59, 3347–3353 (2020)

    Article  Google Scholar 

  19. Arfan, M., Shah, K., Abdeljawad, T., Hammouch, Z.: An efficient tool for solving two-dimensional fuzzy fractional-ordered heat equation. Numer. Methods Partial Differ. Equ. 37(2), 1407–1418 (2021)

    Article  MathSciNet  Google Scholar 

  20. Ullah, A., Ullah, Z., Abdeljawad, T., Hammouch, Z., Shah, K.: A hybrid method for solving fuzzy Volterra integral equations of separable type kernels. J. King Saud Univ. Sci. 33(1), 101246 (2021). (1–8)

    Article  Google Scholar 

  21. Ixaru, L.G., Berghe, G.V.: Exponential Fitting. Springer, Berlin (2004)

    Book  MATH  Google Scholar 

  22. Jha, N., Singh, B.: Exponential basis and exponential expanding grids third (fourth)-order compact schemes for nonlinear three-dimensional convection-diffusion-reaction equation. Adv. Differ. Equ. 339, 1–27 (2019)

    MathSciNet  MATH  Google Scholar 

  23. Varga, R.S.: Matrix Iterative Analysis. Springer, Berlin (2000)

    Book  MATH  Google Scholar 

  24. Young, D.M.: Iterative Solution of Large Linear Systems. Academic Press, New York (1971)

    MATH  Google Scholar 

  25. Henrici, P.: Discrete Variable Methods in Ordinary Differential Equations. Wiley, New York (1962)

    MATH  Google Scholar 

  26. Das, P., Vigo-Aguiar, J.: Parameter uniform optimal order numerical approximation of a class of singularly perturbed system of reaction diffusion problems involving a small perturbation parameter. J. Comput. Appl. Math. 354, 533–544 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  27. Das, P., Rana, S., Vigo-Aguiar, J.: Higher order accurate approximations on equidistributed meshes for boundary layer originated mixed type reaction diffusion systems with multiple scale nature. Appl. Numer. Math. 148, 79–97 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  28. Das, P., Natesan, S.: Optimal error estimate using mesh equidistribution technique for singularly perturbed system of reaction–diffusion boundary-value problems. Appl. Math. Comput. 249, 265–277 (2014)

    MathSciNet  MATH  Google Scholar 

  29. Das, P., Rana, S., Ramos, H.: On the approximate solutions of a class of fractional order nonlinear Volterra integro-differential initial value problems and boundary value problems of first kind and their convergence analysis. J. Comput. Appl. Math. 404, 113116 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  30. Das, P., Rana, S., Ramos, H.: A perturbation-based approach for solving fractional-order Volterra-Fredholm integro differential equations and its convergence analysis. Int. J. Comput. Math. 97, 1994–2014 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kumar, K., Podila, P.C., Das, P., Ramos, H.: A graded mesh refinement approach for boundary layer originated singularly perturbed time-delayed parabolic convection diffusion problems. Math. Methods Appl. Sci. 44, 12332–12350 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  32. Chandru, M., Das, P., Ramos, H.: Numerical treatment of two-parameter singularly perturbed parabolic convection diffusion problems with non-smooth data. Math. Methods Appl. Sci. 41, 5359–5387 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  33. Gander, M.J., Kwok, F.: Numerical Analysis of Partial Differential Equations Using Maple and Matlab. SIAM, Philadelphia (2018)

    Book  MATH  Google Scholar 

  34. Polyanin, A.D., Nazaikinskii, V.E.: Handbook of Linear Partial Differential Equations for Engineers and Scientists. CRC Press, Boca Raton (2015)

    Book  MATH  Google Scholar 

  35. Khan, M.W.S., Ali, N., Asghar, Z.: Mathematical modelling of classical Graetz-Nusselt problem for axisymmetric tube and flat channel using the Carreau fluid model: a numerical benchmark study. Zeitschrift für Naturforschung A 76, 589–603 (2021)

    Article  Google Scholar 

  36. Polyanin, A.D., Zaitsev, V.F.: Handbook of Nonlinear Partial Differential Equations. CRC Press, Boca Raton (2004)

    MATH  Google Scholar 

  37. Zang, Y., Bao, G., Ye, X., Zhou, H.: Weak adversarial networks for high-dimensional partial differential equations. J. Comput. Phys. 411, 1–14 (2020)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

Kritika acknowledges the financial support from the University Grants Commission, India, through a research fellowship (NTA Ref. no. 201610085905) to conduct this research work.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally.

Corresponding author

Correspondence to Navnit Jha.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this article.

Additional declaration for articles in life science journals that report the result of studies involving humans and/ or animals

Not applicable.

Ethics approval

Not applicable.

Consent to participate

We hereby give our consent to participate.

Consent for publication

We hereby give our consent for publication of our paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: Values of undetermined coefficients with \(\zeta =(p-1)(q-1)\)

\({a}_{i,\mathcal{j}}^{(1)}\)

\({a}_{i,\mathcal{j}}^{(2)}\)

\(\left({p}^{2}+1\right)\left({\beta }^{2}\left({q}^{2}+1\right){h}^{2}-2{(q-1)}^{2}\right)\left({\alpha }^{2}{h}^{2}p-{(p-1)}^{2}\right)/\{{\alpha }^{2}{\beta }^{2}{h}^{4}p{\zeta }^{2}\}\)

\({a}_{i+1,\mathcal{j}}^{(1)}\)

\({a}_{i-1,\mathcal{j}}^{(2)}\)

\(-\left({\beta }^{2}\left({q}^{2}+1\right){h}^{2}-2{(q-1)}^{2}\right)\left({\alpha }^{2}{h}^{2}{p}^{2}-({p}^{2}-p+1){(p-1)}^{2}\right)/\{{\zeta }^{2}{\alpha }^{2}{\beta }^{2}{h}^{4}p\}\)

\({a}_{i-1,\mathcal{j}}^{\left(1\right)}\)

\({a}_{i+1,\mathcal{j}}^{\left(2\right)}\)

\(-\left({\beta }^{2}\left({q}^{2}+1\right){h}^{2}-2{\left(q-1\right)}^{2}\right)\left({\alpha }^{2}{h}^{2}p-{\left(p-1\right)}^{2}\right)/\{{\alpha }^{2}{\beta }^{2}{h}^{4}{\zeta }^{2}\}\)

\({a}_{i,\mathcal{j}\pm 1}^{\left(1\right)}\)

\({a}_{i,\mathcal{j}\pm 1}^{\left(2\right)}\)

\(-\left({p}^{2}+1\right)\left({\beta }^{2}{h}^{2}q-{\left(q-1\right)}^{2}\right)\left({\alpha }^{2}{h}^{2}p-{\left(p-1\right)}^{2}\right)/\{{\alpha }^{2}{\beta }^{2}{h}^{4}p{\zeta }^{2}\}\)

\({a}_{i+1,\mathcal{j}\pm 1}^{(1)}\)

\({a}_{i-1,\mathcal{j}\pm 1}^{(2)}\)

\(\left({\beta }^{2}q{h}^{2}-{(q-1)}^{2}\right)\left({\alpha }^{2}{h}^{2}{p}^{2}-({p}^{2}-p+1){(p-1)}^{2}\right)/\{{\alpha }^{2}{\beta }^{2}{h}^{4}p{\zeta }^{2}\}\)

\({a}_{i-1,\mathcal{j}\pm 1}^{(1)}\)

\({a}_{i+1,\mathcal{j}\pm 1}^{(2)}\)

\(\left({\beta }^{2}{h}^{2}q-{(q-1)}^{2}\right)\left({\alpha }^{2}{h}^{2}p-{(p-1)}^{2}\right)/\{{\alpha }^{2}{\beta }^{2}{h}^{4}{\zeta }^{2}\}\)

\({a}_{i,\mathcal{j}}^{\left(3\right)}\)

\({a}_{i,\mathcal{j}}^{\left(4\right)}\)

\(\left({q}^{2}+1\right)\left({\beta }^{2}{h}^{2}q-{\left(q-1\right)}^{2}\right)\left({\alpha }^{2}\left({p}^{2}+1\right){h}^{2}-{2\left(p-1\right)}^{2}\right)/\{{\alpha }^{2}{\beta }^{2}{h}^{4}q{\zeta }^{2}\}\)

\({a}_{i,\mathcal{j}+1}^{(3)}\)

\({a}_{i,\mathcal{j}-1}^{(4)}\)

\(-\left({\alpha }^{2}{h}^{2}\left({p}^{2}+1\right)-2{(p-1)}^{2}\right)\left({\beta }^{2}{h}^{2}{q}^{2}-({q}^{2}-q+1){(q-1)}^{2}\right)/\{{\alpha }^{2}{\beta }^{2}{h}^{4}q{\zeta }^{2}\}\)

\({a}_{i,\mathcal{j}-1}^{\left(3\right)}\)

\({a}_{i,\mathcal{j}+1}^{\left(4\right)}\)

\(-\left({\beta }^{2}{h}^{2}q-{\left(q-1\right)}^{2}\right)\left({\alpha }^{2}{h}^{2}\left({p}^{2}+1\right)-2{\left(p-1\right)}^{2}\right)/\{{\alpha }^{2}{\beta }^{2}{h}^{4}{\zeta }^{2}\}\)

\({a}_{i\pm 1,\mathcal{j}+1}^{(3)}\)

\({a}_{i\pm 1,\mathcal{j}-1}^{(4)}\)

\(\left({\beta }^{2}{q}^{2}{h}^{2}-({q}^{2}-q+1){(q-1)}^{2}\right)\left({\alpha }^{2}{h}^{2}p-{(p-1)}^{2}\right)/\{{\alpha }^{2}{\beta }^{2}{h}^{4}q{\zeta }^{2}\}\)

\({a}_{i\pm 1,\mathcal{j}}^{(3)}\)

\({a}_{i\pm 1,\mathcal{j}}^{(4)}\)

\(-\left({q}^{2}+1\right)\left({\beta }^{2}{h}^{2}q-{(q-1)}^{2}\right)\left({\alpha }^{2}{h}^{2}p-{(p-1)}^{2}\right)/\{{\alpha }^{2}{\beta }^{2}{h}^{4}q{\zeta }^{2}\}\)

\({a}_{i\pm 1,\mathcal{j}-1}^{(3)}\)

\({a}_{i\pm 1,\mathcal{j}+1}^{(4)}\)

\(\left({\beta }^{2}{h}^{2}q-{\left(q-1\right)}^{2}\right)\left({\alpha }^{2}{h}^{2}p-{\left(p-1\right)}^{2}\right)/\{{\alpha }^{2}{\beta }^{2}{h}^{4}{\zeta }^{2}\}\)

\({a}_{i\pm 1,\mathcal{j}+1}^{\left(0\right)}\)

\({a}_{i\pm 1,\mathcal{j}-1}^{\left(0\right)}\)

\(\left({\beta }^{2}{h}^{2}q-{(q-1)}^{2}\right)\left({\alpha }^{2}{h}^{2}p-{(p-1)}^{2}\right)/\{{\alpha }^{2}{\beta }^{2}{h}^{4}{\zeta }^{2}\}\)

\({a}_{i+1,\mathcal{j}}^{\left(0\right)}\)

\({a}_{i-1,\mathcal{j}}^{\left(0\right)}\)

\(-\left({\beta }^{2}\left({q}^{2}+1\right){h}^{2}-2{\left(q-1\right)}^{2}\right)\left({\alpha }^{2}{h}^{2}p-{\left(p-1\right)}^{2}\right)/\{{\alpha }^{2}{\beta }^{2}{h}^{4}{\zeta }^{2}\}\)

\({a}_{i,\mathcal{j}+1}^{\left(0\right)}\)

\({a}_{i,\mathcal{j}-1}^{\left(0\right)}\)

\(-\left({\beta }^{2}{h}^{2}q-{(q-1)}^{2}\right)\left({\alpha }^{2}\left({p}^{2}+1\right){h}^{2}-2{(p-1)}^{2}\right)/\{{\alpha }^{2}{\beta }^{2}{h}^{4}{\zeta }^{2}\}\)

\({a}_{i,\mathcal{j}}^{\left(0\right)}\)

\({a}_{i,\mathcal{j}}^{\left(0\right)}\)

\(\left({\beta }^{2}\left({q}^{2}+1\right){h}^{2}-2{(q-1)}^{2}\right)\left({\alpha }^{2}\left({p}^{2}+1\right){h}^{2}-2{(p-1)}^{2}\right)/\{{\alpha }^{2}{\beta }^{2}{h}^{4}{\zeta }^{2}\}\)

\({\tau }_{i+1,\mathcal{j}}\)

\({\tau }_{i-1,\mathcal{j}}\)

\(-\{{\alpha }^{2}{h}^{2}p+{(p-1)}^{2}\}/\{{\alpha }^{2}{{h}^{2}\left(p-1\right)}^{2}\}\)

\({\tau }_{i,\mathcal{j}+1}\)

\({\tau }_{i,\mathcal{j}-1}\)

\(-\{-{\beta }^{2}{h}^{2}q+{(q-1)}^{2}\}/\{{\beta }^{2}{{h}^{2}\left(q-1\right)}^{2}\}\)

\({\tau }_{i,\mathcal{j}}\)

\({\tau }_{i,\mathcal{j}}\)

\(\{\left({\beta }^{2}{h}^{2}\left({{(pq-1)}^{2}+(p-q)}^{2}\right)-2{\zeta }^{2}\right){\alpha }^{2}-2{\zeta }^{2}{\beta }^{2}\}/\{{\alpha }^{2}{\beta }^{2}{h}^{2}{\zeta }^{2}\}\)

Appendix 2: Matrices appearing in Eqs. (50) and (51)

\({{\varvec{H}}}_{1}\)

\(\left[\begin{array}{c}\begin{array}{cc}{\alpha }^{2}\left(5{B}_{i,\mathcal{j}}+h\left({A}_{i,\mathcal{j}}+5{B}_{i,\mathcal{j}}^{x}\right)\right)& -{\beta }^{2}\left({C}_{i,\mathcal{j}}+h{C}_{i,\mathcal{j}}^{x}\right)\end{array}\\ \begin{array}{cc}{\alpha }^{2}\left(5{B}_{i,\mathcal{j}}-h\left({A}_{i,\mathcal{j}}+5{B}_{i,\mathcal{j}}^{x}\right)\right)& -{\beta }^{2}\left({C}_{i,\mathcal{j}}-h{C}_{i,\mathcal{j}}^{x}\right)\end{array}\end{array}\right]\)

\({{\varvec{H}}}_{2}\)

\(\left[\begin{array}{c}\begin{array}{ccc}{A}_{i,\mathcal{j}}+\left({A}_{i,\mathcal{j}}^{x}+2{\alpha }^{2}{B}_{i,\mathcal{j}}\right)h& -h{C}_{i,\mathcal{j}}{\beta }^{2}& {A}_{i,\mathcal{j}}+h{A}_{i,\mathcal{j}}^{x}\end{array}\\ \begin{array}{ccc}{A}_{i,\mathcal{j}}-\left({A}_{i,\mathcal{j}}^{x}+2{\alpha }^{2}{B}_{i,\mathcal{j}}\right)h& h{C}_{i,\mathcal{j}}{\beta }^{2}& {A}_{i,\mathcal{j}}-h{A}_{i,\mathcal{j}}^{x}\end{array}\end{array}\right]\)

\({{\varvec{H}}}_{3}\)

\(\left[\begin{array}{c}\begin{array}{ccc}-4\left({B}_{i,\mathcal{j}}+h{B}_{i,\mathcal{j}}^{x}\right)& h{A}_{i,\mathcal{j}}& 2\left({C}_{i,\mathcal{j}}+h{C}_{i,\mathcal{j}}^{x}\right)\end{array}\\ \begin{array}{ccc}-4\left({B}_{i,\mathcal{j}}-h{B}_{i,\mathcal{j}}^{x}\right)& -h{A}_{i,\mathcal{j}}& 2\left({C}_{i,\mathcal{j}}-h{C}_{i,\mathcal{j}}^{x}\right)\end{array}\end{array}\right]\)

\({{\varvec{H}}}_{4}\)

\(\left[\begin{array}{c}\begin{array}{cc}{B}_{i,\mathcal{j}}& -2{C}_{i,\mathcal{j}}\end{array}\\ \begin{array}{cc}{-B}_{i,\mathcal{j}}& 2{C}_{i,\mathcal{j}}\end{array}\end{array}\right]\)

\({{\varvec{T}}}_{1}\)

\(\left[\begin{array}{c}\begin{array}{cc}{\alpha }^{2}\left({B}_{i,\mathcal{j}}^{y}+h{B}_{i,\mathcal{j}}\right)& -{\beta }^{2}\left(\left({A}_{i,\mathcal{j}}+5{C}_{i,\mathcal{j}}^{y}\right)h+5{C}_{i,\mathcal{j}}\right)\end{array}\\ \begin{array}{cc}{\alpha }^{2}\left({-B}_{i,\mathcal{j}}^{y}+h{B}_{i,\mathcal{j}}\right)& {\beta }^{2}\left(\left({A}_{i,\mathcal{j}}+5{C}_{i,\mathcal{j}}^{y}\right)h-5{C}_{i,\mathcal{j}}\right)\end{array}\end{array}\right]\)

\({{\varvec{T}}}_{2}\)

\(\left[\begin{array}{c}\begin{array}{ccc}{A}_{i,\mathcal{j}}+h{A}_{i,\mathcal{j}}^{y}& -h{B}_{i,\mathcal{j}}{\alpha }^{2}& {A}_{i,\mathcal{j}}+\left({A}_{i,\mathcal{j}}^{y}+2{\beta }^{2}{C}_{i,\mathcal{j}}\right)h\end{array}\\ \begin{array}{ccc}{A}_{i,\mathcal{j}}-h{A}_{i,\mathcal{j}}^{y}& h{B}_{i,\mathcal{j}}{\alpha }^{2}& {A}_{i,\mathcal{j}}-\left({A}_{i,\mathcal{j}}^{y}+2{\beta }^{2}{C}_{i,\mathcal{j}}\right)h\end{array}\end{array}\right]\)

\({{\varvec{T}}}_{3}\)

\(\left[\begin{array}{c}\begin{array}{ccc}2\left({B}_{i,\mathcal{j}}+h{B}_{i,\mathcal{j}}^{y}\right)& h{A}_{i,\mathcal{j}}& -4\left({C}_{i,\mathcal{j}}+h{C}_{i,\mathcal{j}}^{y}\right)\end{array}\\ \begin{array}{ccc}2\left({B}_{i,\mathcal{j}}-h{B}_{i,\mathcal{j}}^{y}\right)& -h{A}_{i,\mathcal{j}}& -4\left({C}_{i,\mathcal{j}}-h{C}_{i,\mathcal{j}}^{y}\right)\end{array}\end{array}\right]\)

\({{\varvec{T}}}_{4}\)

\(\left[\begin{array}{c}\begin{array}{cc}{2B}_{i,\mathcal{j}}& -{C}_{i,\mathcal{j}}\end{array}\\ \begin{array}{cc}{-2B}_{i,\mathcal{j}}& {C}_{i,\mathcal{j}}\end{array}\end{array}\right]\)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jha, N., Kritika Exponential Basis Approximated Fuzzy Components High-Resolution Compact Discretization Technique for 2D Convection–Diffusion Equations. Differ Equ Dyn Syst (2022). https://doi.org/10.1007/s12591-022-00616-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12591-022-00616-9

Keywords

Mathematics Subject Classification

Navigation