Skip to main content
Log in

Filtering Theory for a Weakly Coloured Noise Process

  • Original Research
  • Published:
Differential Equations and Dynamical Systems Aims and scope Submit manuscript

Abstract

The problem of analyzing the Itô stochastic differential system and its filtering has received attention. The classical approach to accomplish filtering for the Itô SDE is the Kushner equation. In contrast to the classical filtering approach, this paper presents filtering for the stochastic differential system affected by weakly coloured noise, i.e., \(\dot{x}_{t} = f\left( {x_{t} } \right) + g\left( {x_{t} } \right)\xi_{t} ,\) where the input process \(\xi_{t}\) is a weakly coloured noise process. As a special case, the process \(\xi_{t}\) can be regarded as the Ornstein–Uhlenbeck (OU) process, i.e., \(d\xi_{t} = - \alpha \xi_{t} dt + \beta dB_{t} ,\) where \(\alpha > 0.\) More precisely, the filtering model of this paper can be cast as

\(\dot{x}_{t} = f\left( {x_{t} } \right) + g\left( {x_{t} } \right)\xi_{t} ,\)

\(z_{t} = \int\limits_{{t_{0} }}^{t} {h(x_{\tau } )d\tau + \eta_{t} ,}\)

where \(h(x_{t} )\) is the measurement non-linearity and \(\eta = \{ \eta_{t} ,t_{0} \le t < \infty \}\) is the Brownian motion process. The former expression describes the structure of a noisy dynamical system, and the latter is the observation equation. The novelties of this paper are two (1) the extension of the filtering theory for the Itô stochastic differential system to the filtering theory for the ‘weakly coloured noise-driven’ stochastic differential system (2) the theory of this paper is based on a pioneering contribution of Ruslan Stratonovich involving the perturbation-theoretic approach to noisy dynamical systems in combination with the notion of the ‘filtering density’ evolution. The stochastic evolution of condition moment is derived by utilizing the filtering density evolution equation. A scalar Duffing system driven by the OU process is employed to test the effectiveness of the filtering theory of the paper. Numerical simulations involving four different sets of initial conditions and system parameters are utilized to examine the efficacy of the filtering algorithm of this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kloeden, P.E., Platen, E.: The Numerical Solutions of Stochastic Differential Equations (applications of mathematics). Springer, New York (1991)

    MATH  Google Scholar 

  2. van Campen, N.G.: Stochastic processes in physics and chemistry. Elsevier, London (2007)

    Google Scholar 

  3. Karatzas, I., Shreve, S.E.: Brownian Motion and Stochastic Calculus (graduate text in mathematics). Springer, New York (1991)

    MATH  Google Scholar 

  4. Strook, D.W., Varadhan, S.R.S.: Multidimensional diffusion processes (classics in mathematics). Springer, Heidelberg (1979)

    Google Scholar 

  5. Hida, T., Kuo, H.-H., Pontho, J., Streit, L.: White noise: an infinite dimensional calculus. Kluwer, Dordrecht (1993)

    Book  MATH  Google Scholar 

  6. Kuo,H.-H.: White noise stochastic integration. In: Stochastic analysis: classical and quantum, eProceedings, World Scientific, 57–71 (2006). https://doi.org/10.1142/9789812701541_0006

  7. Liptser, R.S., Shiryayev, A.N.: Statistics of random processes, 1st edn. Springer, Berlin (1977)

    Book  MATH  Google Scholar 

  8. Hänggi, P.: The functional derivative and its use in the description of noisy dynamical systems. In: Pesquera, L., Rodriguez, M. (eds.) Stochastic processes applied to physics, pp. 69–95. World Scientific, Heyden (1995)

    Google Scholar 

  9. Bhatt, A.B., Karandikar, R.L.: On filtering with Ornstein-Uhlenbeck process as observation noise (1999). www.isid.ac.in/~statmath/eprints/2002/isid200232.ps

  10. Mandrekar, V., Mandal, P.K.: A Bayes formula for Gaussian process and its applications. SIAM Journal on Control and Optimization 39, 852–871 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Jazwinski, A.H.: Stochastic processes and filtering theory. Academic Press, New York (1970)

    MATH  Google Scholar 

  12. Jiménez-Aquino, J.I., Romero-Bastida, M.: Non-Markovian stationary probability density for a harmonic oscillator in an electromagnetic field. Phys. Rev. E Stat. Nonlinear Soft Matt. Phys. 86, 1–7 (2012). https://doi.org/10.1103/PhysRevE.86.061115

    Article  Google Scholar 

  13. Bagheri, S.: Effects of weak noise on oscillating flows: linking quality factor, floquet modes, and Koopman spectrum. Phys. Fluids. (2014). https://doi.org/10.1063/1.4895898

    Article  Google Scholar 

  14. Mitarai, N., Alon, U., Jensen, M.H.: Entrainment of noise-induced and limit cycle oscillators under weak noise. Chaos. (2013). https://doi.org/10.1063/1.4808253

    Article  MATH  Google Scholar 

  15. Kumar, P., Narayanan, S., Gupta, S.: Finite element solution of Fokker–Planck equation of non-linear oscillators subjected to colored non-Gaussian noise. Probab. Eng. Mech. 38, 143–155 (2014). https://doi.org/10.1016/j.probengmech.2014.07.002

    Article  Google Scholar 

  16. Tranchida, J., Thibaudeau, P., Nicolis, S.: Colored-noise magnetization dynamics: from weakly to strongly correlated noise. IEEE Transa. Magn. (2016). https://doi.org/10.1109/TMAG.2016.2527362

    Article  Google Scholar 

  17. Siu-Siu, G., Qingxuan, S.: Probabilistic solutions of non-linear oscillators excited by combined colored and white noise excitations. Commun. Nonlinear Sci. Numer. Simul. 44, 414–423 (2017). https://doi.org/10.1016/j.cnsns.2016.09.003

    Article  MathSciNet  MATH  Google Scholar 

  18. Strey, H.H.: Estimation of parameters from time traces originating from an Ornstein-Uhlenbeck process. Phys. Rev. E 100, 1–11 (2019). https://doi.org/10.1103/PhysRevE.100.062142

    Article  Google Scholar 

  19. Baghram, S., Nikakhtar, F., Tabar, M.R.R., Rahvar, S., Sheth, R.K., Lehnertz, K., Sahimi, M.: Exact enumeration approach to first-passage time distribution of non-Markov random walks. Phys. Rev. E 99, 1–10 (2019). https://doi.org/10.1103/PhysRevE.99.062101

    Article  MathSciNet  Google Scholar 

  20. Sage, A.P., Melsa, P.L.: Estimation theory with applications to communications and control. MC Graw Hill, New York (1971)

    Book  MATH  Google Scholar 

  21. Patel, H.G., Sharma, S.N.: Some evolutions equations for an Ornstein-Uhlenbeck process driven dynamical systems. Fluct. Noise Lett. 11, 1250020–1250039 (2012)

    Article  Google Scholar 

  22. Stratonovich, R.L.: Topics in the theory of random noise. Gordan and Breach, New York (1963)

    Google Scholar 

  23. Kushner, H.J.: Approximations to optimal non-linear filters. IEEE Trans. Autom. Control 12, 546–556 (1967)

    Article  Google Scholar 

  24. Pugachev, V.S., Sinitsyn, I.N.: Stochastic differential systems (analysis and filtering). John-Wiley and Sons, Chichester (1987)

    MATH  Google Scholar 

  25. Hänggi, P., Jung, P.: Colored noise in dynamical systems. In: Prigogine, I., Rice, S.A. (eds.) Advances in chemical physics, pp. 239–323. John Wiley and Sons, Chichester (1995)

    Google Scholar 

  26. Sontag, E.D.: Mathematical control theory: deterministic finite-dimensional systems. Springer, New York (1998)

    Book  MATH  Google Scholar 

  27. Germani, A., Manes, C., Palumbo, P.: Filtering of stochastic non-linear differential systems via a Carleman approximation approach. IEEE Trans. Autom. Control 52, 2166–2172 (2007)

    Article  MATH  Google Scholar 

  28. Sharma, S.N.: A Kushner approach for small random perturbations of a stochastic Duffing-van der Pol system. Automatica 45, 1097–1099 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaival H. Nagarsheth.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: The Fokker–Planck Equation

Appendix A: The Fokker–Planck Equation

The Fokker–Planck equation is the evolution of conditional probability density for given initial states for a Markov process. The evolution of the conditional probability density of the non-Markov process is known as the stochastic equation. The stochastic equation for a non-Markov process, which satisfies \(\dot{x}_{t} = f(x_{t} ) + g(x_{t} )\xi_{t} ,\) where the input process \(\xi_{t}\) has relatively smaller correlation time, reduces to the Fokker–Planck equation. Consider the input process \(\xi_{t}\) is OU process with smaller correlation time, the Fokker–Planck equation can be derived using the functional calculus [8]. Here, we state an alternative and a brief approach to arrive at the Fokker–Planck equation for the OU process-driven stochastic differential system. The standard structure of the Fokker–Planck equation is given in Stratonovich ([22], p. 62), i.e.,and consider

$$\dot{p}\left( x \right) = - \frac{\partial }{\partial x}k_{1} \left( x \right)p\left( x \right) + \frac{1}{2}\frac{{\partial^{2} k_{2} \left( x \right)p\left( x \right)}}{{\partial x^{2} }},$$
$$k_{1} \left( x \right) = M\left( x \right) + \frac{1}{4}\frac{dk\left( x \right)}{{dx}},$$
(29)
$$k_{2} \left( x \right) = k\left( x \right),$$
(30)

a simple calculation shows that the Fokker–Planck equation can be recast as

$$\dot{p}\left( x \right) = - \frac{\partial }{\partial x}M\left( x \right)p\left( x \right) + \frac{1}{4}\frac{\partial }{\partial x}\left( {k\left( x \right)\frac{\partial p}{{\partial x}} + \frac{\partial k\left( x \right)p\left( x \right)}{{\partial x}}} \right).$$
(31)

The terms \(k_{1} (x)\) and \(k_{2} (x)\) for the OU process-driven stochastic differential system are

$$k_{1} (x) = f + Dgg^{\prime} + D\tau_{cor} g^{2} g^{\prime}\left( \frac{f}{g} \right)^{\prime },$$
(32)
$$k_{2} (x) = 2Dg^{2} + 2D\tau_{cor} g^{3} \left( \frac{f}{g} \right)^{\prime }.$$
(33)

Equations (4, 5) in combination with Eq. (10) result eq. (32, 33). Equations (32, 33) in conjunction with eq. (29, 30) lead to

$$\begin{aligned} k(x) & = 2Dg^{2} + 2D\tau_{cor} g^{3} \left( \frac{f}{g} \right)^{\prime }, \\ \frac{1}{4}\frac{\partial k(x)}{{\partial x}} = Dgg^{\prime} + \frac{3}{2}D\tau_{cor} g^{2} g^{\prime}\left( \frac{f}{g} \right)^{\prime } + \frac{1}{2}D\tau_{cor} g^{3} \left( \frac{f}{g} \right)^{\prime \prime }, \\ M(x) = f - \frac{1}{2}D\tau_{cor} g^{2} g^{\prime}\left( \frac{f}{g} \right)^{\prime } - \frac{1}{2}D\tau_{cor} g^{3} \left( \frac{f}{g} \right)^{\prime\prime }. \\ \end{aligned}$$
(34)

Equation (31) in combination with Eq. (34) leads to

$$\begin{aligned} \dot{p}(x) & = - \frac{\partial }{\partial x}\left( {f - \frac{{D\tau_{cor} }}{2}g^{2} g^{\prime}\left( \frac{f}{g} \right)^{\prime } - \frac{1}{2}D\tau_{cor} g^{3} \left( \frac{f}{g} \right)^{\prime\prime }} \right)p + \frac{1}{4}\frac{\partial }{\partial x}\left( {\left( {2Dg^{2} + 2D\tau_{cor} g^{3} \left( \frac{f}{g} \right)^{\prime }} \right)\frac{\partial p}{{\partial x}}} \right. \\ \left. { + \frac{\partial }{\partial x}\left( {2Dg^{2} + 2D\tau_{cor} g^{3} \left( \frac{f}{g} \right)^{\prime }} \right)p} \right). \\ \end{aligned}$$

Further simplification leads to

$$\begin{aligned} \dot{p}(x) & = - \frac{\partial }{\partial x}fp + \frac{{D\tau_{cor} }}{2}\frac{\partial }{\partial x}g^{2} g^{\prime}\left( \frac{f}{g} \right)^{\prime }p + \frac{1}{2}D\tau_{cor} \frac{\partial }{\partial x}g^{3} \left( \frac{f}{g} \right)^{\prime\prime }p \\ + \frac{1}{4}\frac{\partial }{\partial x}\left( {\left( {2Dg^{2} + 2D\tau_{cor} g^{3} \left( \frac{f}{g} \right)^{\prime }} \right)\frac{\partial p}{{\partial x}}} \right) + \frac{1}{4}\frac{\partial }{\partial x}\left( {\left( {2Dg^{2} + 2D\tau_{cor} g^{3} \left( \frac{f}{g} \right)^{\prime }} \right)\frac{\partial p}{{\partial x}}} \right) \\ + \frac{1}{4}\frac{\partial }{\partial x}\left( {4Dgg^{\prime} + 2D\tau_{cor} g^{3} \left( \frac{f}{g} \right)^{\prime\prime } + 6D\tau_{cor} g^{2} g^{\prime}\left( \frac{f}{g} \right)^{\prime }} \right)p. \\ \end{aligned}$$

A re-arrangement of the right-hand side terms of the above equation results

$$\dot{p}(x) = - \frac{\partial }{\partial x}fp + \frac{\partial }{\partial x}\left( {\left( {Dg^{2} + D\tau_{cor} g^{3} \left( \frac{f}{g} \right)^{\prime }} \right)\frac{\partial p}{{\partial x}}} \right) + \frac{\partial }{\partial x}\left( {Dgg^{\prime} + D\tau_{cor} g^{3} \left( \frac{f}{g} \right)^{\prime\prime } + 2D\tau_{cor} g^{2} g^{\prime}\left( \frac{f}{g} \right)^{\prime }} \right)p,$$

Furthermore,after combining the last two terms of the above equation, we have

$$\dot{p}(x) = - \frac{\partial }{\partial x}fp + D\frac{\partial }{\partial x}g\left( {\left( {g + \tau_{cor} g^{2} \left( \frac{f}{g} \right)^{\prime }} \right)\frac{\partial p}{{\partial x}}} \right) + D\frac{\partial }{\partial x}g\left( {g^{\prime} + \tau_{cor} g^{2} \left( \frac{f}{g} \right)^{\prime\prime } + 2\tau_{cor} gg^{\prime}\left( \frac{f}{g} \right)^{\prime }} \right)p,$$
$$\dot{p}(x) = - \frac{\partial }{\partial x}fp + D\frac{\partial }{\partial x}\left( {g\frac{\partial }{\partial x}\left( {g + \tau_{cor} g^{2} \left( \frac{f}{g} \right)^{\prime }} \right)p} \right) = - \frac{\partial }{\partial x}fp + D\frac{\partial }{\partial x}\left( {g\frac{\partial }{\partial x}g\left( {1 + \tau_{cor} g\left( \frac{f}{g} \right)^{\prime }} \right)p} \right),$$
(35)

Eq. (35) can be regarded as the Fokker–Planck equation for the OU process-driven stochastic differential system, where the OU process is a weakly coloured noise process.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagarsheth, S.H., Bhatt, D.S. & Sharma, S.N. Filtering Theory for a Weakly Coloured Noise Process. Differ Equ Dyn Syst 31, 957–976 (2023). https://doi.org/10.1007/s12591-020-00553-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12591-020-00553-5

Keywords

Navigation