Skip to main content
Log in

Existence of Unique Solutions to the Telegraph Equation in Binary Reproducing Kernel Hilbert Spaces

  • Original Research
  • Published:
Differential Equations and Dynamical Systems Aims and scope Submit manuscript

Abstract

We demonstrate the existence of a unique solution to a nonhomogeneous telegraph initial/boundary value problem on the unit square in an appropriate binary reproducing kernel Hilbert space which depends on the smoothness of the driver. Examples are given to illustrate the numerical effectiveness of the reproducing kernel method when properly applied and the aberrations which can occur when no solution exists in the space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akgül, A., Inc, M., Karatas, E.: Reproducing kernel functions for difference equations. Discrete Contin. Dyn. Syst. Ser. S 8, 1055–1064 (2015)

    MathSciNet  MATH  Google Scholar 

  2. Akgül, A., Inc, M., Karatas, E., Baleanu, D.: Numerical solutions of fractional differential equations of lane-emden type by an accurate technique. Adv. Differ. Equ. 2015, 220 (2015)

    Article  MathSciNet  Google Scholar 

  3. Aronszajn, N.: Theory of reproducing kernels. Trans. Amer. Math. Soc. 68, 337–404 (1950)

    Article  MathSciNet  Google Scholar 

  4. Bergman, Stefan: The Kernel Function and Conformal Mapping. American Mathematical Society, New York (1950)

    Book  Google Scholar 

  5. Carathéodory, C.: Vorlesungen Über Relle Funktionen. Verlag und Druck von B.G. Tuebner, Leipzig und Berlin (1918)

    MATH  Google Scholar 

  6. Cui, M., Deng, Z.: On the best operator of interpolation. Math. Numer. Sin. 8, 209–216 (1986)

    MathSciNet  MATH  Google Scholar 

  7. Cui, M., Lin, Yingzhen: Nonlinear Numerical Analysis in the Reproducing Kernel Space. Nova Science Publishers Inc., New York (2009)

    MATH  Google Scholar 

  8. Ding, H-f, Zhang, Y-x, Cao, J-x, Tian, J-h: A class of difference scheme for solving telegraph equation by new non-polynomial spline methods. Appl. Math. Comput. 218, 4671–4683 (2012)

    MathSciNet  MATH  Google Scholar 

  9. Geng, Fazhan: Solving integral equations of the third kind in the reproducing kernel space. Bull. Iran. Math. Soc. 38, 543–551 (2012)

    MathSciNet  MATH  Google Scholar 

  10. Geng, Fazhan, Cui, Minggen: Solving a nonlinear system of second order boundary value problems. J. Math. Anal. Appl. 327, 1167–1181 (2007)

    Article  MathSciNet  Google Scholar 

  11. Geng, Fazhan, Cui, Minggen: A reproducing kernel method for solving nonlocal fractional boundary value problems. Appl. Math. Lett. 25, 818–823 (2012)

    Article  MathSciNet  Google Scholar 

  12. Griebel, Michael, Rieger, Christian, Zwicknagl, Barbara: Multiscale approximation and reproducing kernel Hilbert space methods. SIAM J. Numer. Anal. 53, 852–873 (2015)

    Article  MathSciNet  Google Scholar 

  13. Inc, Mustafa, Akgül, Ali: The reproducing Kernel Hilbert space method for solving Troesch’s problem. J. Assoc. Arab Univ. Basic Appl. Sci. 14, 19–27 (2013)

    Google Scholar 

  14. Inc, M., Akgül, A.: Approximate solutions for MHD squeezing fluid flow by a novel method. Bound. Value Probl. 2014, 18 (2014)

    Article  MathSciNet  Google Scholar 

  15. Inc, Mustafa, Akgül, Ali, Geng, Fazhan: Reproducing Kernel Hilbert space method for solving Bratu’s problem. Bull. Malays. Math. Soc. 38, 271–287 (2015)

    Article  MathSciNet  Google Scholar 

  16. Inc, M., Akgül, A., Kilicman, A.: Numerical solutions of the second order one-dimensional telegraph equation based on reproducing Kernel Hilbert space method. Abstr. Appl. Anal. 2013, 13 (2013)

    MathSciNet  MATH  Google Scholar 

  17. Inc, M., Akgül, A., Kilicman, A.: On solving KdV equation using reproducing Kernel Hilbert space method. Abstr. Appl. Anal. 2013, 11 (2013). (Article ID 578942)

    MATH  Google Scholar 

  18. Lojaciewicz, S.: An Introduction to the Theory of Functions. Wiley-Interscience Publication, Chichester (1988)

    Google Scholar 

  19. McOwen, R.C.: Partial Differential Equations: Methods and Applications, 2nd edn, pp. 57–58. Pearson Education, Hoboken, New Jersey (2003)

  20. Mohanty, R.K.: An unconditionally stable finite difference formula for a linear second order one space dimensional hyperbolic equation with variable coefficients. Appl. Math. Comput. 165, 229–236 (2005)

    MathSciNet  MATH  Google Scholar 

  21. Šremr, J.: Absolutely continuous functions of two variables in the sense of Carathéodory. Electron. J. Differ. Equ. 2010, 1–11 (2010)

    MathSciNet  MATH  Google Scholar 

  22. Personal communication from Professor Jiří Šremr

  23. Strauss, W.: Partial Differential Equations: An Introduction. John Wiley and Sons, New York (1992). (See exercise 8, p. 358.)

    MATH  Google Scholar 

  24. Wang, Yu-lan, Chao, Lu: Using reproducing Kernel for solving a class of partial differential equation with variable coefficients. Appl. Math. Mech. 29, 129–137 (2008)

    Article  MathSciNet  Google Scholar 

  25. Wendland, H.: Scattered Data Approximation. Cambridge University Press, Cambridge (2005)

    MATH  Google Scholar 

  26. Wu, B.Y., Li, X.Y.: A new algorithm for a class of linear nonlocal boundary value problems based on the reproducing kernel method. Appl. Math. Lett. 24, 156–159 (2011)

    Article  MathSciNet  Google Scholar 

  27. Wu, B.Y., Li, X.Y.: Iterative reproducing kernel method for nonlinear oscillator with discontinuity. Appl. Math. Lett. 23, 1301–1304 (2010)

    Article  MathSciNet  Google Scholar 

  28. Yao, H., Lin, Yingzhen: Solving singular boundary value problems of higher even order. J. Comput. Appl. Math. 223, 703–713 (2009)

    Article  MathSciNet  Google Scholar 

  29. Zaremba, S.: L’équation biharmonique et une classe remarquable de fonctions fondamentales harmoniques. Bull. Intern l’Acad. des Sci. de Crac. 39, 147-196 (1907)

  30. Zaremba, S.: Sur le calcul numérique des fonctions demandées dan le probléme de dirichlet et le probleme hydrodynamique. Bull. Intern. l’Acad. des Sci. de Crac. 125-195 (1908)

Download references

Acknowledgements

The authors thank Professor Jiří Šremr for clarifying discussions, patient corrections, and illustrative counterexamples connected with real functions on \(\Omega \) which are absolutely continuous in the sense of Carathéodory. Furthermore, the authors express their gratitude to Professor Tynisbek Kalmenov for pointing out the seminal importance of obtaining sufficient conditions on the driver guaranteeing a solution in \(W_2^{(3,3)}(\Omega )\) to (1.1)–(1.2)–(1.3). Finally, the authors are grateful to Mr. Jabar Hassan for suggesting the form of the extension of f to F in the proof of Theorem  4.1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Grow.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akgül, A., Grow, D. Existence of Unique Solutions to the Telegraph Equation in Binary Reproducing Kernel Hilbert Spaces. Differ Equ Dyn Syst 28, 715–744 (2020). https://doi.org/10.1007/s12591-019-00453-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12591-019-00453-3

Keywords

Mathematics Subject Classification

Navigation