Skip to main content
Log in

Numerical Simulation of Two-Dimensional Pucci’s Equation with Dirichlet Boundary Conditions Using Nonvariational Finite Element Method

  • Original Research
  • Published:
Differential Equations and Dynamical Systems Aims and scope Submit manuscript

Abstract

This paper provides numerical simulation of two-dimensional Pucci’s equation with Dirichlet boundary conditions. The Pucci’s operator is a prototype of a nonlinear operator in non-divergence form. Non-divergence form makes numerical solution challenging because standard tools like Pohozaev identity and global integration by parts are no longer applicable. Therefore, present study for the numerical solution relies on non-variational finite element method, which is independent of above said tools. After non-variational space discretization the resulting finite dimensional problem is solved by Newton iterative method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Crandall, M., Ishi, H., Lions, P.L.: User’s guide to viscosity solutions of second order partial differential equations. Bull. AMS. 27(1), 1–67 (1992)

    Article  MathSciNet  Google Scholar 

  2. Cabré, X., Caffarelli, L.A.: Fully nonlinear elliptic equation, american mathematical society. Colloquium Publication, Cologne (1995)

    MATH  Google Scholar 

  3. Felmer, P., Quaas, A.: Positive solutions to semilinear equation involving the Pucci’s operator. J. Differ. Equ. 199(2), 376–393 (2004)

    Article  MathSciNet  Google Scholar 

  4. Quaas, A.: Existence of positive solutions to a semilinear equation involving the Pucci’s operator in a convex domain. Diff. Integral Equ. 17, 481–494 (2004)

    MathSciNet  MATH  Google Scholar 

  5. Rouy, E.: First Semi-eigenvalue for nonlinear elliptic operator (preprint)

  6. Rabinowitz, P.H., Berestycki, H.: Théorie du degré topologique et applications à des problémes aux limites non linéaires. Université Paris VI, Laboratoire analyse numérique (1975)

    Google Scholar 

  7. Lions, P.L.: Bifurcation and optimal stochastic control. Nonlinear Anal. 2, 177–207 (1983)

    Article  MathSciNet  Google Scholar 

  8. Lions, P.L.: Two remarks on Monge–Ampre equations. Ann. Mat. Pura Appl. 142(4), 263–275 (1985)

    Article  MathSciNet  Google Scholar 

  9. Oliker, V.I., Prussner, L.D.: On the numerical solution of the equation\((\dfrac{\partial ^2z}{\partial x^2})(\dfrac{\partial ^2z}{\partial y^2})-(\dfrac{\partial ^2z}{\partial x\partial y})^2=f\) and its discretizations. I. Numer. Math. 54(3), 271–293 (1988)

    Article  Google Scholar 

  10. Dean, E.J., Glowinski, R.: On the numerical solution of a two-dimensional Puccis equation with Dirichlet boundary conditions: a least-squares approach. C. R. Acad. Sci. Paris. Ser. I. 341, 375–380 (2005)

  11. Oberman, A.M.: Wide stencil finite difference schemes for the elliptic Monge–Ampere equation and functions of the eigenvalues of the Hessian. Discrete Contin. Dyn. Syst. Ser. B 10(1), 221–238 (2008)

    MathSciNet  MATH  Google Scholar 

  12. Kumar, M., Mishra, G.: An Introduction to numerical methods for the solutions of partial differential equations. Appl. Math. 2, 1327–1338 (2011)

    Article  Google Scholar 

  13. Kumar, M., Mishra, G.: A Review on nonlinear elliptic partial differential equations and approaches for solution. Int. J. Nonlinear Sci. 13(4), 401–418 (2012)

    MathSciNet  MATH  Google Scholar 

  14. Kumar, M., Srivastava, A., Mishra, G.: Numerical simulation of a non-linear singular perturbed schrdinger equation using finite element approximation. Natl. Acad. Sci. Lett. 36(3), 239–252 (2013)

    Article  Google Scholar 

  15. Kumar, M., Srivastava, A., Mishra, G.: A finite element approach for finding positive solutions of a logistic equation with a sign-changing weight function. Appl. Math. Comput. 241, 112–124 (2014)

    MathSciNet  MATH  Google Scholar 

  16. Lakkis, O., Preyer, T.: A finite element method for second order nonvariational elliptic problems. SIAM J. Comput. 33(2), 786–801 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research work is supported by financial grant No. 9/1032(0005)2K14-EMR-I sponsored by Council of Scientific and Industrial Research, New Delhi, Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoj Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, G., Kumar, M. Numerical Simulation of Two-Dimensional Pucci’s Equation with Dirichlet Boundary Conditions Using Nonvariational Finite Element Method. Differ Equ Dyn Syst 30, 353–362 (2022). https://doi.org/10.1007/s12591-018-0441-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12591-018-0441-7

Keywords

Navigation