Skip to main content

Advertisement

Log in

Role of Viral Infection in Controlling Planktonic Blooms-Conclusion Drawn from a Mathematical Model of Phytoplankton-Zooplankton System

  • Original Research
  • Published:
Differential Equations and Dynamical Systems Aims and scope Submit manuscript

Abstract

Bloom dynamics is an important study in the aquatic system. In the present paper we have considered a phytoplankton-zooplankton system with viral infection in both species. We have observed the stability of different equilibria under some threshold conditions.We have worked out the conditions for the occurrence of Hopf bifurcation. To observe the global behaviour of our model system we have performed extensive numerical simulations. Planktonic bloom oscillations are observed for increasing viral infection in both phytoplankton and zoo-plankton species. It is also observed that planktonic bloom oscillations can be stabilized for increasing density dependent mortality of phytoplankton species. It is concluded that viral infection in both species and density dependent mortality in phytoplankton species may play an important role in controlling planktonic blooms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Agusti, S., Duarte, C.M., Kalff, J.: Cell size and the maximum density and biomass of phytoplankton. Limnol. Oceanogr. 32, 983–986 (1987)

    Article  Google Scholar 

  2. Anderson, R.M., May, R.M.: The invasion and spread of infectious diseases within animal and plant communities. Philos. Trans. R. Soc. Lond. B314, 533–570 (1986)

    Google Scholar 

  3. Beltrami, E., Carroll, T.O.: Modelling the role of viral disease in recurrent phytoplankton blooms. J. Math. Biol. 32, 857–863 (1994)

    Article  MATH  Google Scholar 

  4. Bergh, O., Borsheim, K.Y., Bratbak, G., Heldal, M.: High abundance of viruses found in aquatic environments. Nature 340, 467–468 (1989)

    Article  Google Scholar 

  5. Bratbak, G., Egge, J.K., Heldal, M.: Viral mortality of the marine alga Emiliania huxleyi (Haptophyceae) and termination of algal blooms. Mar. Ecol. Prog. Ser. 93, 39–48 (1993)

    Article  Google Scholar 

  6. Bratbak, G., Thingstad, F., Heldal, M.: Viruses and the microbial loop. Mocrob. Ecol. 28, 209–221 (1994)

    Article  Google Scholar 

  7. Bratbak, G., Levasseur, M., Michaud, S., Cantin, G., Fernandez, E., Heimdal, B.R., Heldal, M.: Viral activity in relation to Emiliania huxleyi blooms: a mechanism of DMSP release? Mar. Ecol. Prog. Ser. 128, 133–142 (1995)

    Article  Google Scholar 

  8. Brussaard, C.P.D., Kempers, R.S., Kop, A.J., Reigman, R., Heldal, M.: Virus-like particles in a summer bloom of Emiliania huxleyi in the North Sea. Aquat. Microb. Ecol. 10, 105–113 (1996)

    Article  Google Scholar 

  9. Chattopadhyay, J., Ghosal, G., Chaudhuri, K.S.: Nonselective harvesting of a predator–prey community with infected prey. Korean J. Comput. Appl. Math. 6, 601–616 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chattopadhyay, J., Pal, S.: Viral infection on phytoplankton–zooplankton system—a mathematical model. Ecol. Modell. 151, 15–28 (2002)

    Article  Google Scholar 

  11. Chattopadhyay, J., Sarkar, R.R., Mandal, S.: Toxin producing plankton may act as a biological control for planktonic blooms-field study and mathematical modeling. J. Theor. Biol. 215, 333–344 (2002a)

    Article  Google Scholar 

  12. Chattopadhyay, J., Sarkar, R., Elabdllaoui, A.: A delay differential equation model on harmful algal blooms in the presence of toxic substances. IMA J. Math. Appl. Med. Biol. 19, 137–161 (2002b)

    Article  MATH  Google Scholar 

  13. Chiswell, S.M., Calil, P.H.R., Boyd, P.: Spring blooms and annual cycles of phytoplankton: a unified perspective. J. Plankton Res. 37(3), 500–508 (2015)

  14. Comps, M., Menu, B., Breuil, G., Bonami, J.R.: Viral infection associated with rotifer mortalities in mass culture. Aquaculture 93, 1–7 (1991)

    Article  Google Scholar 

  15. Cottrell, M.T., Suttle, C.A.: Wide-spread occurrence and clonal variation in viruses which cause lysis of a cosmopolitan, eukaryotic marine phytoplankter, Micromonas pusilla. Mar. Ecol. Prog. Ser. 78, 1–9 (1991)

    Article  Google Scholar 

  16. DeJong, R., Liang, C.C., Lauber, E.: Conditional and unconditional automaticity: a dual-process model of effects of spatial stimulus-response correspondence. J. Exp. Psychol. Hum. Percept. Perform. 20, 731–750 (1994)

    Article  Google Scholar 

  17. Dodds, J.A.: Viruses of marine algae. Experientia 35, 440–442 (1979)

    Article  Google Scholar 

  18. Ebert, U., Arrayas, M., Temme, N., Sommeijer, B., Huisman, J.: Critical conditions for phytoplankton blooms. Bull. Math. Biol. 63, 1095–1124 (2001)

    Article  MATH  Google Scholar 

  19. Edwards, A.M., Brindley, J.: Oscillatory behaviour in a threecomponent plankton population model. Dyn. Stab. Syst. 11, 347–370 (1996)

    Article  MATH  Google Scholar 

  20. Frada, M.J., Schatz, D., Farstey, V., Ossolinski, J.E., Sabanay, H., Ben-Dor, S., Koren, I., Vardi, A.: Zooplankton may serve as transmission vectors for viruses infecting algal blooms in the ocean. Curr. Biol. 24, 2592–2597 (2014)

    Article  Google Scholar 

  21. Friedland, K.D., Record, N.R., Asch, R.G., Kristiansen, T., Saba, V.S., Drinkwater, K.F., Henson, S., Leaf, R.T., Morse, R.E., Johns, D.G., Large, S.I., Hjllo, S.S., Nye, J.A., Alexander, M.A., Ji, R.: Seasonal phytoplankton blooms in the North Atlantic linked to the overwintering strategies of copepods. Elem. Sci. Anthropocene 4(1), 1–19 (2016)

  22. Fuhrman, J.A.: Bacterioplankton roles in cycling of matter: the microbial food web. In: Falkowski, P.G., Woodhead, A.D. (eds.) Primary Productivity and Biogeochemical Cycles in the Sea, pp. 361–383. Plenum Press, New York (1992)

    Chapter  Google Scholar 

  23. Hamilton, W.D., Axelrod, R., Tanese, R.: Sexual reproduction as an adaptation to resist parasite: a review. Proc. Natl. Acad. Sci. USA 87, 3566–3573 (1990)

    Article  Google Scholar 

  24. Hashioka, T., Vogt, M., Yamanaka, Y., Le Qur, C., Buitenhuis, E.T., Aita, M.N., Alvain, S., Bopp, L., Hirata, T., Lima, I., Sailley, S., Doney, S.C.: Phytoplankton competition during the spring bloom in four plankton functional type models. Biogeosciences 10, 6833–6850 (2013)

    Article  Google Scholar 

  25. Hilker, F.M., Malchow, H., Langlais, M., Petrovskii, S.V.: Oscillations and waves in a virally infected plankton system: part-II: transition from lysogeny to lysis. Ecol. Complex. 3(3), 200–208 (2006)

    Article  Google Scholar 

  26. Huisman, J.P., Van Oostveen, Weissing, F.J.: Critical depth and critical turbulence: two different mechanisms for the development of phytoplankton blooms. Limnol. Oceanogr. 44, 1781–1788 (1999)

    Article  Google Scholar 

  27. Huppert, A., Blasius, B., Stone, L.: A model of phytoplankton blooms. Am. Nat. 159, 156–171 (2002)

    Article  Google Scholar 

  28. Inoue, M., Kamifukumoto, H.: Scenarios leading to chaos in a forced Lotka Volterra model. Prog. Theor. Phys. 71, 930–937 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  29. Lewandowska, A.M., Boyce, D.G., Hofmann, M., Matthiessen, B., Sommer, U., Worm, B.: Effects of sea surface warming on marine plankton. Ecol. Lett. 17, 614–623 (2014)

    Article  Google Scholar 

  30. Lewandowska, A.M., Striebel, M., Feudel, U., Hillebrand, H., Sommer, U.: The importance of phytoplankton trait variability in spring bloom formation. ICES J. Mar. Sci. 72(6), 1908–1915 (2015)

    Article  Google Scholar 

  31. Lindemann, C., St.John, M.A.: A seasonal diary of phytoplankton in the North Atlantic. Front. Mar. Sci 37(1), 1–6 (2014)

    Google Scholar 

  32. Malchow, H., Hilker, F.M., Sarkar, R.R., Brauer, K.: Spatiotemporal patterns in an excitable plankton system with lysogenic viral infection. Math. Comput. Modell. 42, 1035–1048 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  33. Mathews, L., Brindley, J.: Patchiness in plankton population. Dyn. Stab. Syst. 12, 39–59 (1996)

    Article  MathSciNet  Google Scholar 

  34. Mayer, J.A.: A viral infection in the marine Prasinophycean alga, Micromonas pusilla. J. Phycol. 13, 229–301 (1977)

    Google Scholar 

  35. Murray, J.D.: Mathematical Biology. Springer, New York (1989)

    Book  MATH  Google Scholar 

  36. Nagasaki, k, Yamaguchi, M.: Isolation of a virus infectious to the harmful bloom causing micro alga Heterosigma akashiwo(Raphidophyceae). Aquat. Microb. Ecol. 13, 135–140 (1997)

    Article  Google Scholar 

  37. Perovskii, S.V., Li, B.L., Malchow, H.: Transition to spatiotemporal chaos can resolve the paradox of enrichment. Ecol. Complex. 1, 37–47 (2004)

    Article  Google Scholar 

  38. Pitchford, J.W., Brindley, J.: Intratrophic predation in simple predator–prey models. Bull. Math. Biol. 60, 937–953 (1998)

    Article  MATH  Google Scholar 

  39. Platt, T., Bird, D.F., Sathyendranath, S.: Critical depth and marine primary production. Proc. Roy. Soc. Lond. B. 246, 205–217 (1991)

    Article  Google Scholar 

  40. Rinaldi, S., Muratori, S., Kuznetsov, Y.: Multiple attractors, catastrophe and chaos in seasonally perturbed predator–prey communities. Bull. Math. Biol. 55, 15–35 (1993)

    Article  MATH  Google Scholar 

  41. Rosenzweig, M.L., MacArthur, R.H.: Graphical representation and stability conditions of predatorprey interactions. Am. Nat. 97, 209–223 (1963)

    Article  Google Scholar 

  42. Sarkar, R.R., Chattopadhyay, J.: Occurrence of planktonic blooms under environmental fluctuations and its possible control mechanism—mathematical models and experimental observations. J. Theo. Biol. 224, 501–516 (2003)

    Article  MATH  Google Scholar 

  43. Singh, B.K., Chattopadhyay, J., Sinhaa, S.: The role of virus infection in a simple phytoplankton zooplankton system. J. Theor. Biol. 231, 153–166 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  44. Smayda, T.J.: Harmful algal blooms: their ecophysiology and general relevance to phytoplankton blooms in the sea. Limnol. Oceanogr. 42, 1137–1153 (1997a)

    Article  Google Scholar 

  45. Steele, J.H., Henderson, E.W.: The significance of interannual variability. In: Evans, G.T., Fasham, M.J.R. (eds.) Towards a Model of Ocean Biogeochemical Processes, pp. 237–260. Springer, Berlin (1993)

    Chapter  Google Scholar 

  46. Suttle, C.A., Chan, A.M.: Marine cyanophages infecting oceanic and coastal strains of Synechococcus: abundance, morphology, cross-infectivity and growth characteristics. Mar. Ecol. Prog. Ser. 92, 99–109 (1993)

    Article  Google Scholar 

  47. Suttle, C.A., Chan, A.M.: Viruses infecting the marine Prymnesiophyte Chrysochromulina spp.: isolation, preliminary characterization and natural abundance. Mar. Ecol. Prog. Ser. 118, 275–282 (1995)

    Article  Google Scholar 

  48. Suttle, C., Charm, A., Cottrell, M.: Infection of phytoplankton by viruses and reduction of primary productivity. Nature 347, 467–469 (1990)

    Article  Google Scholar 

  49. Tont, S.: Short-period climatic fluctuations: effects on diatom biomass. Science 194, 942–944 (1976)

    Article  Google Scholar 

  50. Truscott, J., Brindely, J.: Ocean plankton populations as excitable media. Bull. Math. Biol. 56(1), 185–211 (1994)

    Google Scholar 

  51. Uhlig, G., Sahling, G.: Long-term studies on Noctilucascintillans in the German bight. Neth. J. Sea Res. 25, 101–112 (1992)

    Article  Google Scholar 

  52. Van Etten, J.L., Lane, L.C., Meints, R.H.: Viruses and viruslike particles of eucaryotic algae. Microbiol. Rev. 55, 586–620 (1991)

    Article  Google Scholar 

  53. Venturino, E.: Epidemics in predator–prey models: disease in the prey. In: Arino, O., Axelrod, D., Kimmel, M., Langlais, M. (eds.) Mathematical Population Dynamics: Analysis of Heterogeneity, vol. 1, pp. 381–393. Theory of Epidemics. Wuerz Publishing. Winnipeg (1995)

  54. Weissing, F.J., Huisman, J.: Growth and competition in a light gradient. J. Theor. Biol. 168, 323–336 (1994)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the reviewers for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishna Pada Das.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, K.P., Roy, P., Karmakar, P. et al. Role of Viral Infection in Controlling Planktonic Blooms-Conclusion Drawn from a Mathematical Model of Phytoplankton-Zooplankton System. Differ Equ Dyn Syst 28, 381–400 (2020). https://doi.org/10.1007/s12591-016-0332-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12591-016-0332-8

Keywords

Navigation