Skip to main content
Log in

A New Numerical Method Based on Non-Polynomial Spline in Tension Approximations for 1D Quasilinear Hyperbolic Equations on a Variable Mesh

  • Original Research
  • Published:
Differential Equations and Dynamical Systems Aims and scope Submit manuscript

Abstract

In this paper, we derive a new three level implicit method of order two in time and three in space, based on spline in tension approximation for the numerical solution of one space dimensional quasi-linear second order hyperbolic partial differential equation on a variable mesh. We also study application of the proposed method to wave equation in polar coordinates. High order approximation at first time level is briefly discussed which is applicable to solve problems both on uniform and non-uniform mesh. Numerical results are given to illustrate the usefulness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bickley, W.G.: Piecewise cubic interpolation and two point boundary value problems. Comput. J. 11, 206–208 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  2. Fyfe, D.J.: The use of cubic splines in the solution of two point boundary value problems. Comput. J. 12, 188–192 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  3. Fleck Jr, J.A.: A cubic spline method for solving the wave equation of nonlinear optics. J. Comput. Phys. 16, 324–341 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  4. Raggett, G.F., Wilson, P.D.: A fully implicit finite difference approximation to the one-dimensional wave equation using a cubic spline technique. J. Inst. Math. Appl. 14, 75–77 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  5. Jain, M.K., Aziz, Tariq: Spline function approximation for differential equations. Comput. Methods Appl. Mech. Eng. 26, 129–143 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  6. Jain, M.K., Aziz, Tariq: Cubic spline solution of two-point boundary value problems with significant first derivatives. Comput. Methods Appl. Mech. Eng. 39, 83–91 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  7. Al-Said, E.A.: Spline methods for solving a system of second order boundary value problems. Int. J. Comput. Math. 70, 717–727 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kadalbajoo, M.K., Bawa, R.K.: Cubic spline method for a class of non-linear singularly perturbed boundary value problems. J. Optim. Theory Appl. 76, 415–428 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  9. Al-Said, E.A.: The use of cubic splines in the numerical solution of a system of second order boundary value problem. Comput. Math. Appl. 42, 861–869 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Aziz, T., Khan, A.: A spline method for second-order singularly perturbed boundary value problems. J. Comput. Appl. Math. 147, 445–452 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kadalbajoo, M.K., Patidar, K.C.: Tension spline for the numerical solution of singularly perturbed non-linear boundary value problems. Comput. Appl. Math. 21, 717–742 (2002)

    MathSciNet  MATH  Google Scholar 

  12. Kadalbajoo, M.K., Patidar, K.C.: Tension spline for the solution of self-adjoint singular perturbation problems. Int. J. Comput. Math. 79, 849–865 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kadalbajoo, M.K., Aggarwal, V.K.: Cubic spline for solving singular two-point boundary value problems. Appl. Math. Comput. 156, 249–259 (2004)

    MathSciNet  MATH  Google Scholar 

  14. Khan, A., Khan, I., Aziz, T., Stojanovic, M.: A variable mesh approximation method for singularly perturbed boundary value problems using cubic spline in tension. Int. J. Comput. Math. 81, 1513–1518 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Khan, I., Aziz, T.: Tension spline method for second-order singularly perturbed boundary-value problems. Int. J. Comput. Math. 82, 1547–1553 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Mohanty, R.K., Evans, D.J., Arora, U.: Convergent spline in tension methods for singularly perturbed two-point singular boundary value problems. Int. J. Comput. Math. 82, 55–66 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Mohanty, R.K., Arora, U.: A family of non-uniform mesh tension spline methods for singularly perturbed two-point singular boundary value problems with significant first derivatives. Appl. Math. Comput. 172, 531–544 (2006)

    MathSciNet  MATH  Google Scholar 

  18. Siraj-ul-Islam, Tirmizi S.I.A., Khan, M.A., Twizell, E. H.: A non-polynomial spline approach to the solution of a system of third-order boundary-value problems using non-polynomial splines. Appl. Math. Comput. 168, 152–163 (2005)

  19. Tirmizi, S.I.A., Haq, F.I., Siraj-ul-Islam: Non-polynomial spline solution of singularly perturbed boundary-value problems. Appl. Math. Comput. 196, 6–16 (2008)

  20. Mohanty, R.K., Jain, M.K., George, K.: On the use of high order difference methods for the system of one space second order non-linear hyperbolic equations with variable coefficients. J. Comp. Appl. Math. 72, 421–431 (1996)

    Article  MATH  Google Scholar 

  21. Mohanty, R.K., Arora, U.: A new discretization method of order four for the numerical solution of one space dimensional second order quasi-linear hyperbolic equation. Int. J. Math. Educ. Sci. Technol. 33, 829–838 (2002)

    Article  MathSciNet  Google Scholar 

  22. Mohanty, R.K., Singh, Suruchi: High accuracy Numerov type discretization for the solution of one space dimensional non-linear wave equations with variable coefficients. J. Adv. Res. Sci. Comput. 03, 53–66 (2011)

    MathSciNet  Google Scholar 

  23. Mohanty, R.K., Gopal, Venu: An off-step discretization for the solution of 1D mildly nonlinear wave equations with variable coefficients. J. Adv. Res. Sci. Comput. 04, 1–13 (2012)

    Google Scholar 

  24. Mohanty, R.K., Singh, Suruchi: High order variable mesh approximation for the solution of 1D non-linear hyperbolic equation. Int. J. Nonlinear Sci. 14, 220–227 (2012)

    MathSciNet  MATH  Google Scholar 

  25. Mohanty, R.K., Kumar, R.: A new fast algorithm based on half-step discretization for one space dimensional quasilinear hyperbolic equations. Appl. Math. Comput. 244, 624–641 (2014)

    MathSciNet  MATH  Google Scholar 

  26. Rashidinia, J., Jalilian, R., Kazemi, V.: Spline methods for the solutions of hyperbolic equations. Appl. Math. Comput. 190, 882–886 (2007)

    MathSciNet  MATH  Google Scholar 

  27. Ding, H., Zhang, Y.: Parametric spline methods for the solution of hyperbolic equations. Appl. Math. Comput. 204, 938–941 (2008)

    MathSciNet  MATH  Google Scholar 

  28. Mohanty, R.K.: An unconditionally stable difference scheme for the one space dimensional linear hyperbolic equation. Appl. Math. Lett. 17, 101–105 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  29. Mohanty, R.K.: New unconditionally stable difference schemes for the solution of multi-dimensional telegraphic equations. Int. J. Comput. Math. 86, 2061–2071 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. Ding, H., Zhang, Y.: A new unconditionally stable compact difference scheme of \(O(\tau ^{2}+h^{4})\) for the 1D linear hyperbolic equation. App. Math. Comput. 207, 236–241 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. Ding, H., Zhang, Y., Cao, J., Tian, J.: A class of difference scheme for solving telegraph equation by new non-polynomial spline methods. App. Math. Comput. 218, 4671–4683 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. Mohanty, R.K., Gopal, Venu: High accuracy cubic spline finite difference approximation for the solution of one-space dimensional non-linear wave equations. Appl. Math. Comput. 218, 4234–4244 (2011)

    MathSciNet  MATH  Google Scholar 

  33. Rashidinia, J., Mohammadi, R.: Tension spline approach for the numerical solution of nonlinear Klein–Gordon equation. Comput. Phys. Comm. 181, 78–91 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  34. Rashidinia, J., Mohammadi, R.: Tension spline solution of nonlinear sine-Gordon equation. Numer. Algorithms 56, 129–142 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  35. Mohanty, R.K., Gopal, V.: A fourth order finite difference method based on spline in tension approximation for the solution of one-space dimensional second order quasi-linear hyperbolic equations. Adv. Differ. Equ. (2013) ID:70

  36. Gopal, V., Mohanty, R.K., Saha, L.M.: A new high accuracy non-polynomial tension spline method for the solution of one dimensional wave equation in polar co-ordinates. J. Egypt. Math. Soc. 22, 280–285 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  37. Kelly, C.T.: Iterative Methods for Linear and Non-linear Equations. SIAM Publications, Philadelphia (1995)

    Book  Google Scholar 

  38. Hageman, L.A., Young, D.M.: Applied Iterative Methods. Dover Publication, New York (2004)

    MATH  Google Scholar 

Download references

Acknowledgments

The authors thank the anonymous reviewers for their valuable suggestions, which substantially improved the standard of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranjan Kumar Mohanty.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohanty, R.K., Kumar, R. A New Numerical Method Based on Non-Polynomial Spline in Tension Approximations for 1D Quasilinear Hyperbolic Equations on a Variable Mesh. Differ Equ Dyn Syst 25, 207–222 (2017). https://doi.org/10.1007/s12591-015-0261-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12591-015-0261-y

Keywords

Mathematics Subject Classification

Navigation