Skip to main content
Log in

Influence of surface modified nanoclay on electrochemical properties of PVDF-HFP composite electrolytes

  • Conference Report
  • Published:
International Journal of Plastics Technology

Abstract

Polymer electrolyte membranes have prepared for dye sensitized solar cells based on Polyvinylidene fluoride-co-hexaflouropropylene (PVDF-HFP) filled with silane modified Sodium montmorillonite (Na-MMT) nanofillers. Na-MMT nanoclay has modified using Aminopropyltrimethoxysilane and it is confirmed by FTIR and XRD. The XRD patterns of PVDF-HFP/Si-NaMMT proved that Si-NaMMT layers were completely exfoliated within the PVDF-HFP matrix. The influence of silane modified clay on the degree of crystallinity of the polymer matrix was studied by using DSC. The Electrochemical studies indicated that the addition of surface modified nanoclay increases the ionic conductivity up to 6.45 × 10−4 S/cm for 4 wt%, whereas the ionic conductivity about 1.14 × 10−4 S/cm with the addition of unmodified counterpart as the filler into the PVDF-HFP. The solid state dye sensitized solar cell has been fabricated by using silane modified Na-MMT/PVdF-HFP polymer nanocomposites electrolyte and Eosin-Y as a sensitizer. The photovoltaic characteristics showed an enhancement in open circuit voltage (Voc) from 0.26 to 0.32 V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Lee RH, Liu JK, Ho JH, Chang JW, Liu BT, Wang HJ, Jeng RJ (2011) Synthesis of quaternized ammonium iodide-containing conjugated polymer electrolytes and their application in dye-sensitized solar cells. Polym Int 60:483–490

    Article  CAS  Google Scholar 

  2. Sakamoto H, Igarashi S, Niume K, Nagai M (2011) Highly efficient all solid state dye-sensitized solar cells by the specific interaction of CuI with NCS groups. Org Electron 12:1247–1252

    Article  CAS  Google Scholar 

  3. Kawano R, Katakabe T, Shimosawa H, Nazeeruddin MK, Grätzel M, Matsui H, Kitamura T, Tanabe N, Watanabe M (2010) Solid-state dye-sensitized solar cells using polymerized ionic liquid electrolyte with platinum-free counter electrode. Phys Chem Chem Phys 12:1916–1921

    Article  CAS  Google Scholar 

  4. Wang P, Zakeeruddin SM, Moser JE, Nazeeruddin MK, Sekiguchi T, Grätzel M (2003) A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte. Nat Mater 2:402–407

    Article  CAS  Google Scholar 

  5. Wu J, Hao S, Lan Z, Lin J et al (2008) All-solid-state dye-sensitized solar cell-based poly(N-alkyl-4-vinyl-pyridine iodide) electrolyte with efficiency of 5.64%. J Am Chem Soc 130:11568–11569

    Article  CAS  Google Scholar 

  6. Kalaignan GP, Kang MS, Kang YS (2006) Effect of compositios on properties of PEO—KI-I2 salts polymer electrolytes for DSSC. Solid State Ionics 177:1091–1097

    Article  CAS  Google Scholar 

  7. Nogueira AF, Durrant JR, De Paoli MA (2001) Dye-sensitized nanocrystalline solar cells employing a polymer electrolyte. Adv Mater 13:826–830

    Article  CAS  Google Scholar 

  8. Li X, Zhao Y, Cheng L et al (2005) Enhanced ionic conductivity of poly(ethylene oxide) (PEO) electrolyte by adding mesoporous molecular sieve LiAlSBA. J Solid State Electrochem 9:609–615

    Article  CAS  Google Scholar 

  9. Yoon S, Ichikawa K et al (1995) Spectroscopic analysis of chain conformation of poly(propylene oxide)-based polymer electrolytes. Macromolecules 28:4278–4283

    Article  CAS  Google Scholar 

  10. Chew KW, Tan KW (2011) The effects of ceramic fillers on PMMA-based polymer electrolyte salted with lithium triflate, LiCF3SO3. Int J Electrochem Sci 6:5792–5801

    CAS  Google Scholar 

  11. Yang Y, Zhang J et al (2008) Effect of lithium iodide addition on poly(ethylene oxide)-poly(vinylidene fluoride) polymer-blend electrolyte for dye-sensitized nanocrystalline solar cell. J Phys Chem B 112:6594–6602

    Article  CAS  Google Scholar 

  12. Lee K-M, Suryanarayanan V, Ho K-C (2009) High efficiency quasi-solid-state dye-sensitized solar cell based on polyvinyidene fluoride-co-hexafluoro propylene containing propylene carbonate and acetonitrile as plasticizers. J Photochem Photobiol A Chem 207:224–230

    Article  CAS  Google Scholar 

  13. Wang P, Zakeeruddin SM, Exnar I, Grätzel M (2002) High efficiency dye-sensitized nanocrystalline solar cells based on ionic liquid polymer gel electrolyte. Chem Commun 8:2972–2973. doi:10.1039/B209322G

    Article  Google Scholar 

  14. Angulakshmi N, Thomas S, Nahm KS, Manuel Stephan A, Nimma Elizabeth R (2011) Electrochemical and mechanical properties of nanochitin-incorporated PVDF-HFP-based polymer electrolytes for lithium batteries. Ionics 17:407–414

    Article  CAS  Google Scholar 

  15. Huo Z, Dai S, Wang K, Kong F, Zhang C, Pan X, Fang X (2007) Nanocomposite gel electrolyte with large enhanced charge transport properties of an I 3/I redox couple for quasi-solid-state dye-sensitized solar cells. Energy Mater Sol Cells 91:1959–1965

    Article  CAS  Google Scholar 

  16. Singh PK, Bhattacharya B, Nagarle RK (2010) Effect of nano-TiO2 dispersion on PEO polymer electrolyte property. J Appl Polym Sci 118:2976–2980

    Article  CAS  Google Scholar 

  17. Park S-J et al (2009) Effects of a silane treatment on the mechanical interfacial properties of montmorillonite/epoxy nanocomposites. Mater Sci Eng A 526:74–78

    Article  Google Scholar 

  18. Liu Y, Lee JY, Hong L (2002) Synthesis, characterization and electrochemical properties of poly(methyl methacrylate)-grafted-poly(vinylidene fluoride-hexafluoropropylene) gel electrolytes. Solid State Ionics 150:317–326

    Article  CAS  Google Scholar 

  19. Abbrent S, Plestil J et al (2001) Crystallinity and morphology of PVdF–HFP-based gel electrolytes. Polymer 42:1407–1416

    Article  CAS  Google Scholar 

  20. Zhao J, Milanova M et al (2012) Colloids Surf A Physicochem Eng Asp 413:273–279

    Article  CAS  Google Scholar 

  21. Chen-Rui et al (2001) Preparation and crystallization behavior of syndiotactic polystyrene–clay nanocomposites. Polymer 42:10063–10070

    Article  Google Scholar 

  22. Nakagawa K, Ishida Y (1973) Dielectric relaxations and molecular motions in poly (vinylidene fluoride) with crystal form II. J Polym Sci: Polym Phys Ed 11:1503–1533

  23. Nakagawa K, Ishida Y (1973) Annealing effects in poly(Vinylidene Fluoride) as revealed by specific volume measurements differential scanning calorimetry, and electron microscopy. J Polym Sci B Polym Phys 1:2153–2171

    Article  Google Scholar 

  24. Kodama H, Takahashi Y, Furukawa T (1999) Nonlinear dielectric investigation of trifluoroethylene-rich copolymers of vinylidene fluoride. Jpn J Appl Phys 38:3589–3595

    Article  CAS  Google Scholar 

  25. Deka M, Kumar A (2011) Electrical and electrochemical studies of poly (vinylidene fluoride)–clay nanocomposite gel polymer electrolytes for Li-ion batteries. J Power Sources 196:1358–1364

    Article  CAS  Google Scholar 

  26. Sharma AL, Thakur AK (2010) Polymer-ion-clay interaction based model for ion conduction in interaction-type polymer nanocomposite. Ionics 16:339–350

    Article  CAS  Google Scholar 

  27. Soboleva T, Xie Z, Shi Z et al (2008) Investigation of the through-plane impedance technique for evaluation of anisotropy of proton conducting polymer membranes. J Electroanal Chem 622:145–152

    Article  CAS  Google Scholar 

  28. Wang JC (1993) Model for impedance of a solid ionic conductor sandwiched between blocking electrodes. Electrochim Acta 38:2111–2114

    Article  CAS  Google Scholar 

  29. Chiang CY, Jaipal Reddy M, Chu PP (2004) Nano-tube TiO2 composite PVdF/LiPF6 solid membranes. Solid State Ionics 175:631–635

    Article  CAS  Google Scholar 

  30. Ramesh S, Ramesh K, Arof AK (2013) Fumed silica doped poly(Vinyl Chloride) poly(Ethylene Oxide) (PVC/PEO) based polymer electrolyte for lithium ion battery. Int J Electrochem Sci 8:8348–8355

    CAS  Google Scholar 

  31. Rajkumar N, Kanmani SS, Ramachandran K (2011) Performance of dye-sensitized solar cell based on TiO2:ZnO nanocomposites. Adv Sci Lett 4:627–633

    Article  CAS  Google Scholar 

  32. Lee KM, Suryanarayanan V, Hoc KC (2009) High efficiency quasi-solid-state dye-sensitized solar cell based on poly vinyidene fluoride-co-hexa fluoro propylene containing propylene carbonate and acetonitrile as plasticizers. J Photochem Photobiol A Chem 207:224–23015

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Prabakaran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prabakaran, K., Mohanty, S. & Nayak, S.K. Influence of surface modified nanoclay on electrochemical properties of PVDF-HFP composite electrolytes. Int J Plast Technol 18, 349–361 (2014). https://doi.org/10.1007/s12588-014-9089-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12588-014-9089-5

Keywords

Navigation