Skip to main content
Log in

Multisourced CO2 Injection in Fan Delta Conglomerates and Its Influence on Reservoir Quality: Evidence from Carbonate Cements of the Baikouquan Formation of Mahu Sag, Junggar Basin, Northwestern China

  • Published:
Journal of Earth Science Aims and scope Submit manuscript

Abstract

Sandy-conglomerate reservoir has gradually become a major target of oil and gas exploration. Complex diagenetic process and diagenetic fluid play a significant role in affecting reservoir heterogeneity. Carbonate cements form at various stages of the diagenesis process and record various geological fluid information. Recently, one-billion-ton sandy conglomerate oil field was exposed in Triassic Baikouquan Formation, Mahu sag, Junggar Basin. Therefore, an integrated study applying casting thin sections, cathodeluminescence, fluorescence, carbon and oxygen stable isotopes, electronic probe microanalysis and aqueous fluid inclusions measurements was performed in order to identify the types of carbonate mineral and its representative diagenetic environment and discuss the influences of different CO2 injections on reservoir quality. The main findings are as follows: The reservoir is mainly composed of 70.33% conglomerate and 16.06% coarse-grained sandstone. They are characterized by low compositional maturity and abundant lithic debris. Four types carbonate cements are identified according to the petrological and geochemical characteristics, including two types of Mn-rich calcite, ferroan calcite, siderite and dawsonite. They display an unusual broad spectrum of δ13C values (−54.99‰ to +8.8‰), suggesting both organic and inorganic CO2 injections. The δ13C values of siderite are close to 0, and its formation is related to meteoric water. The δ13C values of ferroan calcite and the occurrence of dawsonite indicate the trace of inorganic mantle-derived magmatic fluids. The δ13C values and trace elements of Mn-rich calcite record the information of hydrocarbon-bearing fluids. The fluid inclusions measurement data and reservoir properties and oil-test data show that the oil content of reservoir is not only affected by the formation time of different cements, but also by the relative content of dissolution and cementation. For these reservoirs altered by carbonate cements, it does not cause poor oil-bearing due to blockage of secondary minerals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References Cited

  • Anderson, T. F., Arthur, M. A., 1983. Stable Isotopes of Oxygen and Carbon and Their Application to Sedimentologic and Paleoenvironmental Problems. In: Stable Isotopes in Sedimentary Geology. SEPM Society for Sedimentary Geology, 1–1: 1–151. https://doi.org/10.2110/scn.83.01.0000

    Google Scholar 

  • Arnott, R. W. C., 2003. The Role of Fluid- and Sediment-Gravity Flow Processes during Deposition of Deltaic Conglomerates (Cardium Formation, Upper Cretaceous), West-Central Alberta. Bulletin of Canadian Petroleum Geology, 51(4): 426–436. https://doi.org/10.2113/5L4.426

    Article  Google Scholar 

  • Baker, J. C., Bai, G. P., Hamilton, P. J., et al. 1995. Continental-Scale Magmatic Carbon Dioxide Seepage Recorded by Dawsonite in the Bowen-Gunnedah-Sydney Basin System, Eastern Australia. SEPM Journal of Sedimentary Research, 65(3): 522–530. https://doi.org/10.1306/d4268117-2b26-11d7-8648000102c1865d

    Google Scholar 

  • Bath, A. H., Milodowski, A. E., Spiro, B., 1987. Diagenesis of Carbonate Cements in Permo-Triassic Sandstones in the Wessex and East Yorkshire-Lincolnshire Basins, UK: A Stable Isotope Study. Geological Society, London, Special Publications, 36(1): 173–190. https://doi.org/10.1144/gsl.sp.1987.036.01.14

    Article  Google Scholar 

  • Cant, D. J., Ethier, V. G., 1984. Lithology-Dependent Diagenetic Control of Reservoir Properties of Conglomerates, Falher Member, Elmworth Field, Alberta. AAPG Bulletin, 68(8): 1044–1054. https://doi.org/10.1306/ad4616c9-16f7-11d7-8645000102c1865d

    Google Scholar 

  • Cao, J., Hu, W. X., Yao, S. P., et al., 2007. Carbon, Oxygen and Strontium Isotope Composition of Calcite Veins in the Carboniferous to Permian Source Sequences of the Junggar Basin: Implications on Petroleum Fluid Migration. Acta Sedimentologica Sinica, 25(5): 722–729 (in Chinese with English Abstract)

    Google Scholar 

  • Cao, J., Yao, S. P., Jin, Z. J., et al., 2006. Petroleum Migration and Mixing in the Northwestern Junggar Basin (NW China): Constraints from Oil-Bearing Fluid Inclusion Analyses. Organic Geochemistry, 37(7): 827–846

    Article  Google Scholar 

  • Carothers, W. W., Adami, L. H., Rosenbauer, R. J., 1988. Experimental Oxygen Isotope Fractionation between Siderite-Water and Phosphoric Acid Liberated CO2-Siderite. Geochimicaet Cosmochimica Acta, 52(10): 2445–2450. https://doi.org/10.1016/0016-7037(88)90302-X

    Article  Google Scholar 

  • Chen, X., Lu, H. X., Shu, L. S., et al., 2002. Study on Tectonic Evolution of Junnar Basin. Geological Journal of China Universities, 8(3): 257–267 (in Chinese with English Abstract)

    Google Scholar 

  • Chen, Y. B., Pan, J. G., Zhang, H., et al., 2015. Characteristics of Fault Evolution in Mahu Slope Area of Junggar Basin and Its Implications to the Reservoir in the Lower Triassic Baikouquan Formation. Natural Gas Geoscience, 26(S1): 11–24 (in Chinese with English Abstract)

    Google Scholar 

  • Chi, G., Giles, P. S., Williamson, M. A., et al., 2003. Diagenetic History and Porosity Evolution of Upper Carboniferous Sandstones from the Spring Valley #1 Well, Maritimes Basin, Canada-Implications for Reservoir Development. Journal of Geochemical Exploration, 80(2/3): 171–191. https://doi.org/10.1016/S0375-6742(03)00190-0

    Article  Google Scholar 

  • Chowdhury, A. H., Noble, J. P. A., 1996. Origin, Distribution and Significance of Carbonate Cements in the Albert Formation Reservoir Sandstones, New Brunswick, Canada. Marine and Petroleum Geology, 13(7): 837–846. https://doi.org/10.1016/0264-8172(96)00002-5

    Article  Google Scholar 

  • Cui, Y. F., Jones, S. J., Saville, C., et al., 2017. The Role Played by Carbonate Cementation in Controlling Reservoir Quality of the Triassic Skagerrak Formation, Norway. Marine and Petroleum Geology, 85: 316–331. https://doi.org/10.1016/j.marpetgeo.2017.05.020

    Article  Google Scholar 

  • Dos Anjos, S. M., De Ros, L. F., De Souza, R. S., et al., 2000. Depositional and Diagenetic Controls on the Reservoir Quality of Lower Cretaceous Pendencia Sandstones, Potiguar Rift Basin, Brazil. AAPG Bulletin, 84: 1719–1742. https://doi.org/10.1306/8626c375-173b-11d7-8645000102c1865d

    Google Scholar 

  • Duan, W., Luo, C. F., Lou, Z. H., et al., 2017. Diagenetic Differences Caused by the Charging of Natural Gases with Various Compositions—A Case Study on the Lower Zhuhai Formation Clastic Reservoirs in the WC-ASag, the Pearl River Mouth Basin. Marine and Petroleum Geology, 81: 149–168. https://doi.org/10.1016/j.marpetgeo.2017.01.004

    Article  Google Scholar 

  • Dutton, S. P., 2008. Calcite Cement in Permian Deep-Water Sandstones, Delaware Basin, West Texas: Origin, Distribution, and Effect on Reservoir Properties. AAPG Bulletin, 92(6): 765–787. https://doi.org/10.1306/01280807107

    Article  Google Scholar 

  • Edwards, E. C., 1934. Pliocene Conglomerates of Los Angeles Basin and Their Paleogeographic Significance. AAPG Bulletin, 18(6): 786–812. https://doi.org/10.1306/3d932c42-16b1-11d7-8645000102c1865d

    Google Scholar 

  • El-Khatri, F., El-Ghali, M. A. K., Mansurbeg, H., et al., 2015. Diagenetic Alterations and Reservoir Quality Evolution of Lower Cretaceous Fluvial Sandstones: Nubian Formation, Sirt Basin, North-Central Libya. Journal of Petroleum Geology, 38(2): 217–239. https://doi.org/10.1111/jpg.12607

    Article  Google Scholar 

  • Folk, R. L., Andrews, P. B., Lewis, D. W., 1970. Detrital Sedimentary Rock Classification and Nomenclature for Use in New Zealand. New Zealand Journal of Geology and Geophysics, 13(4): 937–968. https://doi.org/10.1080/00288306.1970.10418211

    Article  Google Scholar 

  • Fontana, S., Nader, F. H., Morad, S., et al., 2014. Fluid-Rock Interactions Associated with Regional Tectonics and Basin Evolution. Sedimentology, 61(3): 660–690. https://doi.org/10.1111/sed.12073

    Article  Google Scholar 

  • Friedman, I., O’Neil, J. R., 1977. Compilation of Stable Isotope Fractionation Factors of Geochemical Interest. US Geological Survey Chimica Acta, 41: 1431–1438

    Google Scholar 

  • Gao, Y. Q., Liu, L., Qu, X. Y., 2005. Genesis of Dawsonite and Its Indication Significance of CO2 Migration and Accumulation. Advance in Earth Sciences, 20(10): 1083–1088 (in Chinese with English Abstract)

    Google Scholar 

  • Gieskes, J., Mahn, C., Day, S., et al., 2005. A Study of the Chemistry of Pore Fluids and Authigenic Carbonates in Methane Seep Environments: Kodiak Trench, Hydrate Ridge, Monterey Bay, and Eel River Basin. Chemical Geology, 220(3/4): 329–345. https://doi.org/10.1016/j.chemgeo.2005.04.002

    Article  Google Scholar 

  • Guo, J. X., Li, Q., Wang, W. W., et al., 2017. Diagenetic Sequence and Genetic Mechanism of Silurian Tight Sandstone Reservoirs in the Eastern Tarim Basin, Northwest China. Journal of Earth Science, 28(6): 1109–1125. https://doi.org/10.1007/s12583-016-0939-2

    Article  Google Scholar 

  • Guo, Z. J., Han, B. F., Zhang, Y. Y., et al., 2010. Mesozoic and Cenozoic Crust-Mantle Interaction in the Central Asian Orogenic Belt: A Comparative Study of Mantle-Derived Magmatic Rocks in Northern Xinjiang. Acta Petrologica Sinica, 26(2): 431–439 (in Chinese with English Abstract)

    Google Scholar 

  • Hao, Z. G., Fei, H. C., Hao, Q. Q., et al., 2018. The World’s Largest Conglomerate Type Oilfield has been Discovered in the Junggar Basin of China. Acta Geologica Sinica: English Edition, 92(1): 394–395. https://doi.org/10.1111/1755-6724.13513

    Article  Google Scholar 

  • Helu, P. C., Rodolfo, V. V., Rodolfo, B. P., 1977. Origin and Distribution of Tertiary Conglomerates, Veracruz Basin, Mexico. AAPG Bulletin, 61(2): 207–226. https://doi.org/10.1306/c1ea3c26-16c9-11d7-8645000102c1865d

    Google Scholar 

  • Hu, W. X., 2016. Origin and Indicators of Deep-Seated Fluids in Sedimentary Basins. Bulletin of Mineralogy, Petrology and Geochemistry, 35(5): 817–826, 806 (in Chinese with English Abstract)

    Google Scholar 

  • Hu, W. X., Kang, X., Cao, J., et al., 2018. Thermochemical Oxidation of Methane Induced by High-Valence Metal Oxides in a Sedimentary Basin. Nature Communications, 9(1): 5131. https://doi.org/10.1038/s41467-018-07267-x

    Article  Google Scholar 

  • Irwin, H., Curtis, C., Coleman, M., 1977. Isotopic Evidence for Source of Diagenetic Carbonates Formed during Burial of Organic-Rich Sediments. Nature, 269(5625): 209–213. https://doi.org/10.1038/269209a0

    Article  Google Scholar 

  • Javanbakht, M., Wanas, H. A., Jafarian, A., et al., 2018. Carbonate Diagenesis in the Barremian-Aptian Tirgan Formation (Kopet-Dagh Basin, NE Iran): Petrographic, Geochemical and Reservoir Quality Constraints. Journal of African Earth Sciences, 144: 122–135. https://doi.org/10.1016/j.jafrearsci.2018.04.016

    Article  Google Scholar 

  • Jin, J., Kang, X., Hu, W. X., et al., 2017. Diagenesis and Its Influence on Coarse Clastic Reservoirs in the Baikouquan Formation of Western Slope of the Mahu Depression, Junngar Basin. Oil & Gas Geology, 38(2): 323–333, 406 (in Chinese with English Abstract)

    Google Scholar 

  • Kang, X., Hu, W. X., Cao, J., et al., 2018. Selective Dissolution of Alkali Feldspars and Its Effect on Lower Triassic Sandy Conglomerate Reservoirs in the Junggar Basin, Northwestern China. Geological Journal, 53(2): 475–499. https://doi.org/10.1002/gj.2905

    Article  Google Scholar 

  • Kong, X. X., Jiang, Z. X., Han, C., et al., 2017. Genesis and Implications of the Composition and Sedimentary Structure of Fine-Grained Carbonate Rocks in the Shulu Sag. Journal of Earth Science, 28(6): 1047–1063. https://doi.org/10.1007/s12583-016-0927-x

    Article  Google Scholar 

  • Lei, Z. Y., Lu, B., Wei, Y. J., et al., 2005. Tectonic Evolution and Development and Distribution of Fans on Northwestern Edge of Junggar Basin. Oil & Gas Geology, 26(1): 86–91 (in Chinese with English Abstract)

    Google Scholar 

  • Li, M., Jin, A. M., Lou, Z. H., et al., 2012. Formation Fluid Characteristics and Hydrocarbon Migration and Accumulation in Junggar Basin. Oil & Gas Geology, 33(4): 607–615 (in Chinese with English Abstract)

    Google Scholar 

  • Liu, C. L., 1998. Carbon and Oxygen Isotopic Compositions of Lacustrine Carbonates of the Shahejie Formation in the Dongying Depression and Their Paleolimnological Significance. Acta Sedimentologica Sinica, 16(3): 109–114 (in Chinese with English Abstract)

    Google Scholar 

  • Liu, H., Jiang, Z. X., Zhang, R. F., et al., 2012. Genetic Types of Daxing Conglomerate Bodies and Their Controls on Hydrocarbons in the Langgu Sag, Bohai Bay Basin, East China. Petroleum Exploration and Development, 39(5): 545–551 (in Chinese with English Abstract)

    Article  Google Scholar 

  • Mack, G. H., Cole, D. R., Giordano, T. H., et al., 1991. Paleoclimatic Controls on Stable Oxygen and Carbon Isotopes in Caliche of the Abo Formation (Permian), South-Central New Mexico, USA. SEPM Journal of Sedimentary Research, 61: 458–472. https://doi.org/10.1306/d426773a-2b26-11d7-8648000102c1865d

    Google Scholar 

  • Mahmic, O., Dypvik, H., Hammer, E., 2018. Diagenetic Influence on Reservoir Quality Evolution, Examples from Triassic Conglomerates/Arenites in the Edvard Grieg Field, Norwegian North Sea. Marine and Petroleum Geology, 93: 247–271. https://doi.org/10.1016/j.marpetgeo.2018.03.006

    Article  Google Scholar 

  • McBride, E. F., Parea, G. C., 2001. Origin of Highly Elongate, Calcite-Cemented Concretions in Some Italian Coastal Beach and Dune Sands. Journal of Sedimentary Research, 71(1): 82–87. https://doi.org/10.1306/041900710082

    Article  Google Scholar 

  • Milliken, K. L., McBride, E. F., Cavazza, W., et al., 1998. Geochemical History of Calcite Precipitation in Tertiary Sandstones, Northern Apennines, Italy. In: Morad, S., ed., Carbonate Cementation in Sandstones. Blackwell Publishing Ltd., Oxford. 213–239. https://doi.org/10.1002/9781444304893.ch10

    Chapter  Google Scholar 

  • Moore, J., Adams, M., Allis, R., et al., 2005. Mineralogical and Geochemical Consequences of the Long-Term Presence of CO2 in Natural Reservoirs: An Example from the Springerville-St. Johns Field, Arizona, and New Mexico, USA. Chemical Geology, 217(3/4): 365–385. https://doi.org/10.1016/j.chemgeo.2004.12.019

    Article  Google Scholar 

  • Morad, S., 1998. Carbonate Cementation in Sandstones: Distribution Patterns and Geochemical Evolution. In: Morad, S., ed., Carbonate Cementation in Sandstones. Blackwell Publishing Ltd., Oxford. 1–26. https://doi.org/10.1002/9781444304893.ch1

    Chapter  Google Scholar 

  • Morad, S., Al-Ramadan, K., Ketzer, J. M., et al., 2010. The Impact of Diagenesis on the Heterogeneity of Sandstone Reservoirs: A Review of the Role of Depositional Facies and Sequence Stratigraphy. AAPG Bulletin, 94(8): 1267–1309. https://doi.org/10.1306/04211009178

    Article  Google Scholar 

  • Mozley, P. S., 1989. Relation between Depositional Environment and the Elemental Composition of Early Diagenetic Siderite. Geology, 17(8): 704–706. https://doi.org/10.1130/0091-7613(1989)0170704:rbdeat>2.3.co;2

    Article  Google Scholar 

  • Naehr, T. H., Eichhubl, P., Orphan, V. J., et al., 2007. Authigenic Carbonate Formation at Hydrocarbon Seeps in Continental Margin Sediments: A Comparative Study. Deep Sea Research Part II: Topical Studies in Oceanography, 54(11/12/13): 1268–1291. https://doi.org/10.1016/j.dsr2.2007.04.010

    Article  Google Scholar 

  • NEA (National Energy Administration), 2018. Petroleum and Natural Gas Industry Standard of the People’s Republic of China: SY/T 5435-2018, Method of Grains-Size Analysis of Clastic Rock. National Energy Administration, Beijing (in Chinese)

    Google Scholar 

  • Nodwell, B. J., Hart, B. S., 2006. Deeply-Rooted Paleobathymetric Control on the Deposition of the Falher F Conglomerate Trend, Wapiti Field, Deep Basin, Alberta. Bulletin of Canadian Petroleum Geology, 54(1): 1–21. https://doi.org/10.2113/54.1.1

    Article  Google Scholar 

  • O’Sullivan, T. P., Kiloh, K. D., Starzer, M. R., et al., 1991. Conglomerate Identification and Mapping Leads to Development Success in a MatureAlaskan Field. In: International Arctic Technology Conference, May 29–31, 1991. Anchorage, Alaska. SPE-22163-MS. https://doi.org/10.2118/22163-ms

  • Pan, J. G., Hao, F., Tan, K. J., et al., 2007. Characteristics of Natural Gas and Rules of Hydrocarbon Accumulation in the Northwest Margin of Junggar Basin. Journal of Oil and Gas Technology, 29(2): 20–23, 147 (in Chinese with English Abstract)

    Google Scholar 

  • Qi, W., Pan, J. G., Wang, G. D., et al., 2015. Fluid Inclusion and Hydrocarbon Charge History for the Reservoir of Baikouquan Formation in the Mahu Sag, Junggar Basin. Natural Gas Geoscience, 26(S1): 64–71 (in Chinese with English Abstract)

    Google Scholar 

  • Qiu, L. W., Yang, S. C., Qu, C. S., et al., 2017. A Comprehensive Porosity Prediction Model for the Upper Paleozoic Tight Sandstone Reservoir in the Daniudi Gas Field, Ordos Basin. Journal of Earth Science, 28(6): 1086–1096. https://doi.org/10.1007/s12583-016-0935-2

    Article  Google Scholar 

  • Qu, J. H., Zhang, L., Wu, J., et al., 2017. Characteristics of Sandy Conglomerate Reservoirs and Controlling Factors on Physical Properties of Baikouquan Formation in the Western Slope of Mahu Sag, Junggar Basin. Xinjiang Petroleum Geology, 38(1): 1–6 (in Chinese with English Abstract)

    Google Scholar 

  • Roberts, H. H., Aharon, P., 1994. Hydrocarbon-Derived Carbonate Buildups of the Northern Gulf of Mexico Continental Slope: A Review of Submersible Investigations. Geo-Marine Letters, 14(2/3): 135–148. https://doi.org/10.1007/bf01203725

    Article  Google Scholar 

  • Rogers, J. P., 2007. New Reservoir Model from an Old Oil Field: Garfield Conglomerate Pool, Pawnee County, Kansas. AAPG Bulletin, 91(10): 1349–1365. https://doi.org/10.1306/06140706082

    Article  Google Scholar 

  • Rosenbaum, J., Sheppard, S. M. F., 1986. An Isotopic Study of Siderites, Dolomites and Ankerites at High Temperatures. Geochimicaet Cosmochimica Acta, 50(6): 1147–1150. https://doi.org/10.1016/0016-7037(86)90396-0

    Article  Google Scholar 

  • Rossi, C., Marfil, R., Ramseyer, K., et al., 2001. Facies-Related Diagenesis and Multiphase Siderite Cementation and Dissolution in the Reservoir Sandstones of the Khatatba Formation, Egypt’s Western Desert. SEPM Journal of Sedimentary Research, 71(3): 459–472. https://doi.org/10.1306/2dc40955-0e47-11d7-8643000102c1865d

    Article  Google Scholar 

  • Sackett, W. M., Chung, H. M., 1979. Experimental Confirmation of the Lack of Carbon Isotope Exchange between Methane and Carbon Oxides at High Temperatures. Geochimica et Cosmochimica Acta, 43(2): 273–276. https://doi.org/10.1016/0016-7037(79)90246-1

    Article  Google Scholar 

  • Sensula, B., Boettger, T., Pazdur, A., et al., 2006. Carbon and Oxygen Isotope Composition of Organic Matter and Carbonates in Recent Lacustrine Sediments. Geochronometria, 25: 77–94. https://doi.org/10.1016/j.geobios.2004.10.004

    Google Scholar 

  • Shelby, J. M., 1980. Geologic and Economic Significance of the Upper Morrow Chert Conglomerate Reservoir of the Anadarko Basin. Journal of Petroleum Technology, 32(3): 489–495. https://doi.org/10.2118/7837-pa

    Article  Google Scholar 

  • Stroker, T. M., Harris, N. B., Elliott, W. C., et al., 2013. Diagenesis of a Tight Gas Sand Reservoir: Upper Cretaceous Mesaverde Group, Piceance Basin, Colorado. Marine and Petroleum Geology, 40: 48–68. https://doi.org/10.1016/j.marpetgeo.2012.08.003

    Article  Google Scholar 

  • Suess, E., Whiticar, M. J., 1989. Methane-Derived CO2 in Pore Fluids Expelled from the Oregon Subduction Zone. Palaeogeography, Palaeoclimatology, Palaeoecology, 71(1/2): 119–136. https://doi.org/10.1016/0031-0182(89)90033-3

    Article  Google Scholar 

  • Tan, K. J., Zhang, F., Wu, X. Z., et al., 2008. Basin-Range Coupling and Hydrocarbon Accumulation at the Northwestern Margin of the Junggar Basin. Natural Gas Industry, 28(5): 10–13, 136 (in Chinese with English Abstract)

    Google Scholar 

  • Wang, J., Cao, Y. C., Liu, K. Y., et al., 2016. Pore Fluid Evolution, Distribution and Water-Rock Interactions of Carbonate Cements in Red-Bed Sandstone Reservoirs in the Dongying Depression, China. Marine and Petroleum Geology, 72: 279–294. https://doi.org/10.1016/j.marpetgeo.2016.02.018

    Article  Google Scholar 

  • Wang, K. Y., Li, J. F., Wan, D. D., et al., 2015. The Fluid Inclusion Evidence for the Charging Sequence of CO2 and CH4 in the Natural Gases Reservoir in Deeper Level Parts of Changling Depression. Acta Petrologica Sinica, 31(4): 1101–1107 (in Chinese with English Abstract)

    Google Scholar 

  • Wang, Q., Zhuo, X. Z., Chen, G. J., et al., 2007. Characteristics of Carbon and Oxygen Isotopic Compositions of Carbonate Cements in Triassic Yanchang Sandstone in Ordos Basin. Natural Gas Industry, 27(10): 28–32, 132–133 (in Chinese with English Abstract)

    Google Scholar 

  • Wang, Y. Z., Cao, Y. C., Xi, K. L., et al., 2013. A Recovery Method for Porosity Evolution of Clastic Reservoirs with Geological Time: A Case Study from the Upper Submember of Es4 in the Dongying Depression, Jiyang Subbasin. Acta Petrolei Sinica, 34(6): 1100–1111 (in Chinese with English Abstract)

    Google Scholar 

  • Wang, Y. Z., Lin, M. R., Xi, K. L., et al., 2018. Characteristics and Origin of the Major Authigenic Minerals and Their Impacts on Reservoir Quality in the Permian Wutonggou Formation of Fukang Sag, Junggar Basin, Western China. Marine and Petroleum Geology, 97: 241–259. https://doi.org/10.1016/j.marpetgeo.2018.07.008

    Article  Google Scholar 

  • Whiticar, M. J., 1999. Carbon and Hydrogen Isotope Systematics of Bacterial Formation and Oxidation of Methane. Chemical Geology, 161(1/2/3): 291–314. https://doi.org/10.1016/s0009-2541(99)00092-3

    Article  Google Scholar 

  • Worden, R. H., 2006. Dawsonite Cement in the Triassic Lam Formation, Shabwa Basin, Yemen: ANatural Analogue for a Potential Mineral Product of Subsurface CO2 Storage for Greenhouse Gas Reduction. Marine and Petroleum Geology, 23(1): 61–77. https://doi.org/10.1016/j.marpetgeo.2005.07.001

    Article  Google Scholar 

  • Xi, K. L., Cao, Y. C., Zhu, R. K., et al., 2016. Evidences of Localized CO2-Induced Diagenesisin the Cretaceous Quantou Formation, Southern Songliao Basin, China. International Journal of Greenhouse Gas Control, 52(C): 155–174. https://doi.org/10.1016/j.ijggc.2016.07.010

    Article  Google Scholar 

  • Xiao, M., Yuan, X. J., Cheng, D. W., et al., 2018. Feldspar Dissolution and Its Influence on Reservoirs: A Case Study of the Lower Triassic Baikouquan Formation in the Northwest Margin of the Junggar Basin, China. Geofluids, 2018: 1–19. https://doi.org/10.1155/2018/6536419

    Google Scholar 

  • Xu, G. S., Xu, Z. X., Gong, D. Y., et al., 2014. Relationship between Tanlu Fault and Hydrocarbon Accumulation in Liaozhong Sag, Bohai Bay, Eastern China. Journal of Earth Science, 25(2): 324–336. https://doi.org/10.1007/s12583-014-0432-8

    Article  Google Scholar 

  • Xu, X., Chen, C., Ding, T. F., et al., 2008. Discovery of Lisa Basalt Northwestern Edge of Junggar Basin and Its Geological Significance. Xinjiang Geology, 26(1): 9–16 (in Chinese with English Abstract)

    Google Scholar 

  • Yang, T., Cao, Y. C., Friis, H., et al., 2018. Genesis and Distribution Pattern of Carbonate Cements in Lacustrine Deep-Water Gravity-Flow Sandstone Reservoirs in the Third Member of the Shahejie Formation in the Dongying Sag, Jiyang Depression, Eastern China. Marine and Petroleum Geology, 92: 547–564. https://doi.org/10.1016/j.marpetgeo.2017.11.020

    Article  Google Scholar 

  • Yuan, X. J., Qiao, H. S., 2002. Exploration of Subtle Reservoir in Prolific Depression of Bohai Bay Basin. Oil & Gas Geology, 23(2): 130–133 (in Chinese with English Abstract)

    Google Scholar 

  • Zhu, N., Cao, Y. C., Xi, K. L., et al., 2019. DiagenesisAndphysical Properties Evolution of Sandy Conglomerate Reservoirs: A Case Study of Triassic Baikouquan Formation in Northern Slope Zone of Mahu Despression. Journal of China University of Mining & Technology, 48(5): 1102–1118. https://doi.org/10.13247/j.cnki.jcumt.001019 (in Chinese with English Abstract)

    Google Scholar 

  • Zhu, S. F., Zhu, X. M., Wang, X. L., et al., 2012. Zeolite Diagenesis and Its Control on Petroleum Reservoir Quality of Permian in Northwestern Margin of Junggar Basin, China. Science in China Series D: Earth Sciences, 55(3): 386–396 (in Chinese with English Abstract)

    Article  Google Scholar 

  • Zou, H. Y., Hao, F., Zhang, B. Q., et al., 2005. Fluid-Conduit Framework and Its Control on Petroleum Accumulation in the Junggar Basin. Earth Science, 30(5): 609–616 (in Chinese with English Abstract)

    Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (Nos. U1762217, 41702141), and the Science and Technology Project of China National Petroleum Corporation (No. 2016B-03). We appreciate constructive reviews from the anonymous reviewers and the editors. The final publication is available at Springer via https://doi.org/10.1007/s12583-020-1360-4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingchang Cao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, N., Cao, Y., Xi, K. et al. Multisourced CO2 Injection in Fan Delta Conglomerates and Its Influence on Reservoir Quality: Evidence from Carbonate Cements of the Baikouquan Formation of Mahu Sag, Junggar Basin, Northwestern China. J. Earth Sci. 32, 901–918 (2021). https://doi.org/10.1007/s12583-020-1360-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12583-020-1360-4

Key Words

Navigation