Skip to main content
Log in

Chemical Compositions and Distribution Characteristics of Cements in Longmaxi Formation Shales, Southwest China

  • Petroleum, Natural Gas Geology
  • Published:
Journal of Earth Science Aims and scope Submit manuscript

Abstract

Shale gas resources have been regarded as a viable energy source, and it is of great significance to characterize the shale composition of different cements, such as quartz and dolomite. In this research, chemical analysis and the multifractal method have been used to study the mineral compositions and petrophysical structures of cements in shale samples from the Longmaxi Formation, China. X-ray diffraction, electron microprobe, field emission scanning electron microscopy, cathodoluminescence microscopy and C-O isotope analyses confirmed that cements in the Longmaxi Formation shales are mainly composed of Fe-bearing dolomite and quartz. Fe-bearing dolomite cements concentrate around dolomite as annuli, filling micron-sized inorganic primary pores. Quartz cements in the form of nanoparicles fill primary inter-crystalline pores among clay minerals. Theoretical calculation shows that the Fe-bearing dolomite cements formed slightly earlier than the quartz cements, but both were related to diagenetic illitization of smectite. Moreover, multifractal analysis reveals that the quartz cements are more irregularly distributed in pores than the Fe-bearing dolomite cements. These results suggest that the plugging effect of the quartz cements on the primary inoraganic pore structures is the dominant factor resulting in low interconnected porosity of shales, which are unfavorable for the enrichment of shale gas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References Cited

  • Al-Aasm, I. S., Packard, J. J., 2000. Stabilization of Early-Formed Dolomite: A Tale of Divergence from Two Mississippian Dolomites. Sedimentary Geology, 131(3/4): 97–108. https://doi.org/10.1016/s0037-0738(99)00132-3

    Google Scholar 

  • Abramoff, M. D., Magelhaes, P. J., Ram, S. J., 2004. Image Processing with ImageJ. Biophotonics International, 11(5/6): 36–42. https://doi.org/10.3233/isu-1991-115-601

    Google Scholar 

  • Ajdukiewicz, J. M., Larese, R. E., 2012. How Clay Grain Coats Inhibit Quartz Cement and Preserve Porosity in Deeply Buried Sandstones: Observations and Experiments. AAPG Bulletin, 96(11): 2091–2119. https://doi.org/10.1306/02211211075

    Google Scholar 

  • Baig, M. O., Harris, N. B., Ahmed, H., et al., 2016. Controls on Reservoir Diagenesis in the Lower Goru Sandstone Formation, Lower Indus Basin, Pakistan. Journal of Petroleum Geology, 39(1): 29–47. https://doi.org/10.1111/jpg.12626

    Google Scholar 

  • Bao, H. M., Thiemens, M. H., 2000. Generation of O2 from BaSO4 Using a CO2-Laser Fluorination System for Simultaneous Analysis of δ18O and δ17O. Analytical Chemistry, 72(17): 4029–4032. https://doi.org/10.1021/ac000086e

    Google Scholar 

  • Bettison-Varga, L., Mackinnon, I. D. R., Schiffman, P., 1991. Integrated TEM, XRD and Electron Microprobe Investigation of Mixed-Layer Chlorite-Smectite from the Point Sal Ophiolite, California. Journal of Metamorphic Geology, 9(6): 697–710. https://doi.org/10.1111/j.1525-1314.1991.tb00559.x

    Google Scholar 

  • Bird, N., Díaz, M. C., Saa, A., et al., 2006. Fractal and Multifractal Analysis of Pore-Scale Images of Soil. Journal of Hydrology, 322(1/2/3/4): 211–219. https://doi.org/10.1016/j.jhydrol.2005.02.039

    Google Scholar 

  • Bjorkum, P. A., Walderhaug, O., Aase, N. E., 1993. A Model for the Effect of Illitization on Porosity and Quartz Cementation of Sandstones. Journal of Sedimentary Research, 63(6): 1089–1091. https://doi.org/10.2110/jsr.63.1089

    Google Scholar 

  • Boles, J. R., Franks, S. G., 1979. Clay Diagenesis in Wilcox Sandstones of Southwest Texas: Implications of Smectite Diagenesis on Sandstone Cementation. SEPM Journal of Sedimentary Research, 49(1): 55–70

    Google Scholar 

  • Chen, J., Xiao, X. M., 2014. Evolution of Nanoporosity in Organic-Rich Shales during Thermal Maturation. Fuel, 129: 173–181. https://doi.org/10.1016/j.fuel.2014.03.058

    Google Scholar 

  • Chen, S. B., Han, Y. F., Fu, C. Q., et al., 2016. Micro and Nano-Size Pores of Clay Minerals in Shale Reservoirs: Implication for the Accumulation of Shale Gas. Sedimentary Geology, 342: 180–190. https://doi.org/10.1016/j.sedgeo.2016.06.022

    Google Scholar 

  • Chen, Q., Kang, Y. L., You, L. J., et al., 2017. Change in Composition and Pore Structure of Longmaxi Black Shale during Oxidative Dissolution. International Journal of Coal Geology, 172: 95–111. https://doi.org/10.1016/j.coal.2017.01.011

    Google Scholar 

  • Curtis, M. E., Ambrose, R. J., Sondergeld, C. H., 2010. Structural Characterization of Gas Shales on the Micro- and Nano-Scales. Canadian Unconventional Resources and International Petroleum Conference, October 19–21, Calgary, Alberta. https://doi.org/10.2118/137693-MS

    Google Scholar 

  • Dai, J. X., Zou, C. N., Liao, S. M., et al., 2014. Geochemistry of the Extremely High Thermal Maturity Longmaxi Shale Gas, Southern Sichuan Basin. Organic Geochemistry, 74: 3–12. https://doi.org/10.1016/j.orggeochem.2014.01.018

    Google Scholar 

  • Dowey, P. J., Taylor, K. G., 2017. Extensive Authigenic Quartz Overgrowths in the Gas-Bearing Haynesville-Bossier Shale, USA. Sedimentary Geology, 356: 15–25. https://doi.org/10.1016/j.sedgeo.2017.05.001

    Google Scholar 

  • Evertsz, C. J. G., Mandelbrot, B. B., 1992. Multifractal Measures (Appendix B). In: Peitgen, H.-O., Jurgens, H., Saupe, D., eds. Chaos and Fractals. Springer Verlag, New York. 922–953

    Google Scholar 

  • Gasparrini, M., Bechstädt, T., Boni, M., 2006. Massive Hydrothermal Dolomites in the Southwestern Cantabrian Zone (Spain) and Their Relation to the Late Variscan Evolution. Marine and Petroleum Geology, 23(5): 543–568. https://doi.org/10.1016/j.marpetgeo.2006.05.003

    Google Scholar 

  • Ge, X. M., Fan, Y. R., Li, J. T., et al., 2015. Pore Structure Characterization and Classification Using Multifractal Theory—An Application in Santanghu Basin of Western China. Journal of Petroleum Science and Engineering, 127: 297–304. https://doi.org/10.1016/j.petrol.2015.01.004

    Google Scholar 

  • Geng, Y. K., Jin, Z. K., Zhao, J. H., et al., 2016. Composition and Origin of Clay Minerals in the Lower Silurian Longmaxi Formation in Eastern Sichuan Basin. Natural Gas Geoscience, 27(10):1933–1941. https://doi.org/10.11764/j.issn.1672-1926.2016.10.1933

    Google Scholar 

  • Gipson, M. Jr., 1963. Ultrasonic Disaggregation of Shale. Journal of Sedimentary Research, 33(4): 955–958

    Google Scholar 

  • Goldsmith, J. R., Graf, D. L., 1958. Structural and Compositional Variations in some Natural Dolomites. The Journal of Geology, 66(6): 678–693. https://doi.org/10.1086/626547

    Google Scholar 

  • Halsey, T. C., Jensen, M. H., Kadanoff, L. P., et al., 1986. Fractal Measures and Their Singularities: The Characterization of Strange Sets. Physical Review A, 33(2): 1141–1151. https://doi.org/10.1016/0920-5632(87)90036-3

    Google Scholar 

  • Hu, H. Y., Hao, F., Lin, J. F., et al., 2017. Organic Matter-Hosted Pore System in the Wufeng-Longmaxi (O3 W-S1 1) Shale, Jiaoshiba Area, Eastern Sichuan Basin, China. International Journal of Coal Geology, 173: 40–50. https://doi.org/10.1016/j.coal.2017.02.004

    Google Scholar 

  • Jacobs, B. W., Ayres, V. M., Petkov, M. P., et al., 2007. Electronic and Structural Characteristics of Zinc-Blende Wurtzite Biphasic Homostructure GaN Nanowires. Nano Letters, 7(5): 1435–1438. https://doi.org/10.1021/nl062871y

    Google Scholar 

  • Jiang, C. Q., Chen, Z. H., Lavoie, D., et al., 2017. Mineral Carbon MinC(%) from Rock-Eval Analysis as a Reliable and Cost-Effective Measurement of Carbonate Contents in Shale Source and Reservoir Rocks. Marine and Petroleum Geology, 83: 184–194. https://doi.org/10.1016/j.marpetgeo.2017.03.017

    Google Scholar 

  • Jones, B., Luth, R. W., MacNeil, A. J., 2001. Powder X-Ray Diffraction Analysis of Homogeneous and Heterogeneous Sedimentary Dolostones. Journal of Sedimentary Research, 71(5): 790–799

    Google Scholar 

  • Kong, L. M., Wan, M. X., Yan, Y. X., et al., 2016. Reservoir Diagenesis Research of Silurian Longmaxi Formation in Sichuan Basin, China. Journal of Natural Gas Geoscience, 1(3): 203–211. https://doi.org/10.1016/j.jnggs.2016.08.001

    Google Scholar 

  • Korolyuk, V. N., 2008. JXA-8100 Microanalyzer: Accuracy of Analysis of Rock-Forming Minerals. Russian Geology and Geophysics, 49(3): 165–168. https://doi.org/10.1016/j.rgg.2007.07.005

    Google Scholar 

  • Land, L. S., 1985. The Origin of Massive Dolomite. Journal of Geological Education, 33(2): 112–125. https://doi.org/10.5408/0022-1368-33.2.112

    Google Scholar 

  • Lavrent’Ev, Y. G., Korolyuk, V. N., Usova, L. V., et al., 2015. Electron Probe Microanalysis of Rock-Forming Minerals with a JXA-8100 Electron Probe Microanalyzer. Russian Geology and Geophysics, 56(10): 1428–1436. https://doi.org/10.1016/j.rgg.2015.09.005

    Google Scholar 

  • Li, F. X., Wang, Y., Wang, D. Z., et al., 2004. Characterization of Single-Wall Carbon Nanotubes by N2 Adsorption. Carbon, 42(12/13): 2375–2383. https://doi.org/10.1016/j.carbon.2004.02.025

    Google Scholar 

  • Li, J., Yu, B. S., Liu, C., et al., 2012. Clay Minerals of Black Shale and Their Effects on Physical Properties of Shale Gas Reservoirs in the Southeast of Chongqing: A Case Study from Lujiao Outcrop Section in Pengshui, Chongqing. Geoscience, 26(4): 732–740. https://doi.org/10.1007/s11783-011-0280-z

    Google Scholar 

  • Li, W. H., Lu, S. F., Xue, H. T., et al., 2016. Microscopic Pore Structure in Shale Reservoir in the Argillaceous Dolomite from the Jianghan Basin. Fuel, 181: 1041–1049. https://doi.org/10.1016/j.fuel.2016.04.140

    Google Scholar 

  • Li, X. Q., Bao, H. M., Gan, Y. Q., et al., 2013. Multiple Oxygen and Sulfur Isotope Compositions of Secondary Atmospheric Sulfate in a Mega-City in Central China. Atmospheric Environment, 81(4): 591–599. https://doi.org/10.1016/j.atmosenv.2013.09.051

    Google Scholar 

  • Liang, C., Jiang, Z. X., Cao, Y. C., et al., 2016. Deep-Water Depositional Mechanisms and Significance for Unconventional Hydrocarbon Exploration: A Case Study from the Lower Silurian Longmaxi Shale in the Southeastern Sichuan Basin. AAPG Bulletin, 100(5): 773–794. https://doi.org/10.1306/02031615002

    Google Scholar 

  • Liu, K. Q., Ostadhassan, M., 2017. Multi-Scale Fractal Analysis of Pores in Shale Rocks. Journal of Applied Geophysics, 140: 1–10. https://doi.org/10.1016/j.jappgeo.2017.02.028

    Google Scholar 

  • Liang, L. I., Pan, R., Yang, Y., et al., 2017. Characteristics of Pores and the Controlling Factors in Longmaxi Formation of Silurian Changing Area, Sichuan Basin. Journal of Geology, 41(1): 39–44. https://doi.org/10.3969 /j.issn.1674-3636.2017.01.39 (in Chinese with English Abstract)

    Google Scholar 

  • Liu, J. K., Peng, J., Liu, J. J., et al., 2009. Pore-Preserving Mechanism of Chlorite Rims in Tight Sandstone—An Example from the T3 x Formation of Baojie Area in the Transitional Zone from the Central to Southern Sichuan Basin. Oil and Gas Geology, 30(1): 53–58. https://doi.org/10.3923/ijps.2008.223.233 (in Chinese with English Abstract)

    Google Scholar 

  • Liu, H. M., Zhang, S., Song, G. Q., et al., 2017. A Discussion on the Origin of Shale Reservoir Inter-Laminar Fractures in the Shahejie Formation of Paleogene, Dongying Depression. Journal of Earth Science, 28(6): 1064–1077. https://doi.org/10.1007/s12583-016-0946-3

    Google Scholar 

  • Luo, L., Meng, W. B., Feng, M. S., et al., 2015. Silica Source of Quartz Cements and Its Effects on the Reservoir in Tight Sandstones: A Case Study on the 2th Member of the Xujiahe Formation in Xinchang Structural Belt, Western Sichuan Depression. Natural Gas Geoscience, 26(3): 435–443. https://doi.org/10.11764/j.issn.1672-1926.2015.03.0435 (in Chinese with English Abstract)

    Google Scholar 

  • Lupan, O., Chow, L., Chai, G., et al., 2008. Biopolymer-Assisted Self-Assembly of ZnO Nanoarchitectures from Nanorods. Superlattices and Microstructures, 43(4): 292–302. https://doi.org/10.1016/j.spmi.2007.12.003

    Google Scholar 

  • Machel, H. G., 1997. Recrystallization Versus Neomorphism, and the Concept of ‘significant Recrystallization’ in Dolomite Research. Sedimentary Geology, 113(3/4): 161–168. https://doi.org/10.1016/s0037-0738(97)00078-x

    Google Scholar 

  • Mandelbrot, B. B., 1977. Fractals: Form, Chance and Dimension. W.H. Freeman, San Francisco

    Google Scholar 

  • Midtbø, R. E. A., Rykkje, J. M., Ramm, M., 2000. Deep Burial Diagenesis and Reservoir Quality along the Eastern Flank of the Viking Graben. Evidence for Illitization and Quartz Cementation after Hydrocarbon Emplacement. Clay Minerals, 35(1): 227–237. https://doi.org/10.1180/000985500546602

    Google Scholar 

  • Moore, D. M., Reynolds, R. C. J., 1989. X-Ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford University Press, Oxford. 210–211

    Google Scholar 

  • Mountjoy, E. W., Achel, H. G. M., Green, D., et al., 1999. Devonian Matrix Dolomites and Deep Burial Carbonate Cements: A Comparison between the Rimbey-Meadowbrook Reef Trend and the Deep Basin of West-Central Alberta. Bulletin of Canadian Petroleum Geology, 47(4): 487–509. https://doi.org/10.1007/bf00992913

    Google Scholar 

  • Ouyang, C., Xi, X., Cao, J., 2015. Multifractal Characteristics of Metallogenic Elements of Pingguo Accumulated Bauxite in Guangxi. Geological Science and Technology Information, 34(5): 114–119. https://doi.org/1000-7849(2015)05-0114-06 (in Chinese with English Abstract)

    Google Scholar 

  • Peltonen, C., Marcussen, Ø., Bjørlykke, K., et al., 2009. Clay Mineral Diagenesis and Quartz Cementation in Mudstones: The Effects of Smectite to Illite Reaction on Rock Properties. Marine and Petroleum Geology, 26(6): 887–898. https://doi.org/10.1016/j.marpetgeo.2008.01.021

    Google Scholar 

  • Porten, K. W., Walderhaug, O., Torkildsen, G., 2015. Apatite Overgrowth Cement as a Possible Diagenetic Temperature-History Indicator. Journal of Sedimentary Research, 85(12): 1478–1491. https://doi.org/10.2110/jsr.2015.99

    Google Scholar 

  • Puphaiboon, K., Arjeneh, M., Markvardsen, A. J., 2013. Jpowder Version 2: For the Display and Examination of Powder Diffraction Data Using Stack Plot. Journal of Software Engineering and Applications, 6(4): 168–173. https://doi.org/10.4236/jsea.2013.64021

    Google Scholar 

  • Ramm, M., Forsberg, A. W., Jahren, J. S., 1997. Porosity-Depth Trends in Deeply Buried Upper Jurassic Reservoirs in the Norwegian Central Graben: An Example of Porosity Preservation beneath the Normal Economic Basement by Grain-Coating Microquartz. AAPG Bulletin, 66: 177–199

    Google Scholar 

  • Rusk, B., Reed, M., 2002. Scanning Electron Microscope-Cathodoluminescence Analysis of Quartz Reveals Complex Growth Histories in Veins from the Butte Porphyry Copper Deposit, Montana. Geology, 30(8): 727. https://doi.org/10.1130/0091-7613(2002)030<0727:semcao>2.0.co;2

    Google Scholar 

  • Samtani, M., Skrzypczak-Janktun, E., Dollimore, D., et al., 2001. Thermal Analysis of Ground Dolomite, Confirmation of Results Using an X-Ray Powder Diffraction Methodology. Thermochimica Acta, 367/368: 297–309. https://doi.org/10.1016/s0040-6031(00)00663-8

    Google Scholar 

  • Sliaupa, S., Cyziene, J., Molenaar, N., et al., 2008. Ferroan Dolomite Cement in Cambrian Sandstones: Burial History and Hydrocarbon Generation of the Baltic Sedimentary Basin. Acta Geologica Polonica, 58(1): 27–41. https://doi.org/10.3986/ags48106

    Google Scholar 

  • Steins, P., Poulesquen, A., Frizon, F., et al., 2014. Effect of Aging and Alkali Activator on the Porous Structure of a Geopolymer. Journal of Applied Crystallography, 47(1): 316–324. https://doi.org/10.1107/s160057671303197x

    Google Scholar 

  • Stevens, S. M., Loiola, A. R., Cubillas, P., et al., 2011. Hierarchical Porous Materials: Internal Structure Revealed by Argon Ion-Beam Cross-Section Polishing, HRSEM and AFM. Solid State Sciences, 13(4): 745–749. https://doi.org/10.1016/j.solidstatesciences.2010.04.027

    Google Scholar 

  • Tan, L. L., Ong, W. J., Chai, S. P., et al., 2015. Visible-Light-Active Oxygen-Rich TiO2 Decorated 2D Graphene Oxide with Enhanced Photocatalytic Activity Toward Carbon Dioxide Reduction. Applied Catalysis B: Environmental, 179: 160–170. https://doi.org/10.1016/j.apcatb.2015.05.024

    Google Scholar 

  • Torre, I. G., Losada, J. C., Heck, R. J., et al., 2018. Multifractal Analysis of 3D Images of Tillage Soil. Geoderma, 311: 167–174. https://doi.org/10.1016/j.geoderma.2017.02.013

    Google Scholar 

  • Towe, K. M., 1962. Clay Mineral Diagenesis as a Possible Source of Silica Cement in Sedimentary Rocks. SEPM Journal of Sedimentary Research, 32(1): 26–28

    Google Scholar 

  • Thyberg, B., Jahren, J., Winje, T., et al., 2010. Quartz Cementation in Late Cretaceous Mudstones, Northern North Sea: Changes in Rock Properties Due to Dissolution of Smectite and Precipitation of Micro-Quartz Crystals. Marine and Petroleum Geology, 27(8): 1752–1764. https://doi.org/10.1016/j.marpetgeo.2009.07.005

    Google Scholar 

  • Ukar, E., Lopez, R. G., Laubach, S. E., et al., 2017. Microfractures in Bed-Parallel Veins (Beef) as Predictors of Vertical Macrofractures in Shale: Vaca Muerta Formation, Agrio Fold-and-Thrust Belt, Argentina. Journal of South American Earth Sciences, 79: 152–169. https://doi.org/10.1016/j.jsames.2017.07.015

    Google Scholar 

  • Vega, S., Jouini, M. S., 2015. 2D Multifractal Analysis and Porosity Scaling Estimation in Lower Cretaceous Carbonates. Geophysics, 80(6): D575–D586. https://doi.org/10.1190/geo2014-0596.1

    Google Scholar 

  • Wang, J. L., Liu, G. J., Wang, W. Z., et al., 2013. Characteristics of Pore-Fissure and Permeability of Shales in the Longmaxi Formation in Southeastern Sichuan Basin. Journal of China Coal Society, 38(5): 772–777. https://doi.org/10.13225/j.cnki.jccs.2013.05.009 (in Chinese with English Abstract)

    Google Scholar 

  • Walderhaug, O., Eliassen, A., Aase, N. E., 2012. Prediction of Permeability in Quartz-Rich Sandstones: Examples from the Norwegian Continental Shelf and the Fontainebleau Sandstone. Journal of Sedimentary Research, 82(12): 899–912. https://doi.org/10.2110/jsr.2012.79

    Google Scholar 

  • Walderhaug, O., Ler, R. H., Bjørkum, P. A., et al., 2009. Modelling Quartz Cementation and Porosity in Reservoir Sandstones: Examples from the Norwegian Continental Shelf. Spec. Publs. Int. Ass. Sediment, 29: 39–49

    Google Scholar 

  • Wang, Y. M., Dong, D. Z., Li, X. J., et al., 2015. Stratigraphic Sequence and Sedimentary Characteristics of Lower Silurian Longmaxi Formation in Sichuan Basin and Its Peripheral Areas. Natural Gas Industry B, 2(2/3): 222–232. https://doi.org/10.1016/j.ngib.2015.07.014

    Google Scholar 

  • Weinberg, A. C., Huang, L., Jiang, H., et al., 2011. Size and Distribution of Shocked Mineral Grains in the Pierre Shale (Late Cretaceous) of South Dakota Related to the Manson, Iowa, Impact Event. Journal of the American College of Surgeons, 212(5): 768–78. https://doi.org/10.1016/j.jamcollsurg.2011.02.006

    Google Scholar 

  • Worden, R. H., Charpentier, D., Fisher, Q. J., et al., 2005. Fabric Development and the Smectite to Illite Transition in Upper Cretaceous Mudstones from the North Sea: An Image Analysis Approach. Geological Society, London, Special Publications, 249(1): 103–114. https://doi.org/10.1144/gsl.sp.2005.249.01.09

    Google Scholar 

  • Wu, X. Y., Ling, S. X., Ren, Y., et al., 2016. Elemental Migration Characteristics and Chemical Weathering Degree of Black Shale in Northeast Chongqing, China. Earth Science, 41(2): 218–233. https://doi.org/10.3799/dqkx.2016.017 (in Chinese with English Abstract)

    Google Scholar 

  • Xie, S. Y., Bao, Z. Y., 2004. Fractal and Multifractal Properties of Geochemical Fields. Mathematical Geology, 36(7): 847–864. https://doi.org/10.1023/b:matg.0000041182.70233.47

    Google Scholar 

  • Xie, S. Y., Cheng, Q. M., Xing, X. T., et al., 2010. Geochemical Multifractal Distribution Patterns in Sediments from Ordered Streams. Geoderma, 160(1): 36–46. https://doi.org/10.1016/j.geoderma.2010.01.009

    Google Scholar 

  • Xie, S. Y., Cheng, Q. M., Ling, Q. C., et al., 2010. Fractal and Multifractal Analysis of Carbonate Pore-Scale Digital Images of Petroleum Reservoirs. Marine and Petroleum Geology, 27(2): 476–485. https://doi.org/10.1016/j.marpetgeo.2009.10.010

    Google Scholar 

  • Yang, Y. N., Wang, J., Guo, X. M., et al., 2017. Mineralogical Characteristics and Petroleum Geological Significance of Wufeng-Longmaxi Formation Shales in the Tianba Area, Northeast of Chongqing. Acta Sedimentologica Sinica, 35(4): 772–781. https://doi.org/10.14027/j.cnki.cjxb.2017.04.011 (in Chinese with English Abstract)

    Google Scholar 

  • Ye, Y. H., Liu, S. G., Ran, B., et al., 2017. Characteristics of Black Shale in the Upper Ordovician Wufeng and Lower Silurian Longmaxi Formations in the Sichuan Basin and Its Periphery, China. Australian Journal of Earth Sciences, 64(5): 667–687. https://doi.org/10.1080/08120099.2017.1321581

    Google Scholar 

  • Zhang, X. M., Shi, W. Z., Xu, Q. H., et al., 2015. Reservoir Characteristics and Controlling Factors of Shale Gas in Jiaoshiba Area, Sichuan Basin. Acta Petrolei Sinica, 36(8): 926–941. https://doi.org/10.7623/syxb201508004 (in Chinese with English Abstract)

    Google Scholar 

  • Zhao, J. H., Jin, Z. J., Jin, Z. K., et al., 2017. Mineral Types and Organic Matters of the Ordovician-Silurian Wufeng and Longmaxi Shale in the Sichuan Basin, China: Implications for Pore Systems, Diagenetic Pathways, and Reservoir Quality in Fine-Grained Sedimentary Rocks. Marine and Petroleum Geology, 86: 655–674. https://doi.org/10.1016/j.marpetgeo.2017.06.031

    Google Scholar 

  • Zhou, B., Komulainen, S., Vaara, J., et al., 2017. Characterization of Pore Structures of Hydrated Cements and Natural Shales by 129 Xe NMR Spectroscopy. Microporous and Mesoporous Materials, 253: 49–54. https://doi.org/10.1016/j.micromeso.2017.06.038

    Google Scholar 

  • Zhou, S. W., Xue, H. Q., Ning, Y., et al., 2018. Experimental Study of Supercritical Methane Adsorption in Longmaxi Shale: Insights into the Density of Adsorbed Methane. Fuel, 211: 140–148. https://doi.org/10.1016/j.fuel.2017.09.065

    Google Scholar 

  • Zhou, T., Zhang, S. C., Feng, Y., et al., 2016. Experimental Study of Permeability Characteristics for the Cemented Natural Fractures of the Shale Gas Formation. Journal of Natural Gas Science and Engineering, 29: 345–354. https://doi.org/10.1016/j.jngse.2016.01.005

    Google Scholar 

  • Zhu, W., Tang, D., Yu, T., et al., 2015. The Accurate Determination Method for BET Specific Surface Based on Nitrogen Adsorption of Shale Sample. Science Technology and Engineering, 15(29): 29–33. https://doi.org/1671-1815(2015)29-0029-05 (in Chinese with English Abstract)

    Google Scholar 

Download references

Acknowledgments

This work was financially funded by National Key R&D Program of China (No. 2016YFC0600501), and the support from Natural Science Foundation of China (Nos. 41572315, 41872250), and also supported by the Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan) (No. CUG170104). The authors would like to thank Dr. Zhang and Mr. Wang in the Key Lab of Carbonate Reservoirs, CNPC, Hangzhou. Also the authors want to express their sincere appreciations for the English polishing and constructive suggestions of the anonymous reviewers during the peer review. The final publication is available at Springer via https://doi.org/10.1007/s12583-019-1013-7.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuyun Xie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, W., Xie, S., Bao, Z. et al. Chemical Compositions and Distribution Characteristics of Cements in Longmaxi Formation Shales, Southwest China. J. Earth Sci. 30, 879–892 (2019). https://doi.org/10.1007/s12583-019-1013-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12583-019-1013-7

Key words

Navigation