Skip to main content
Log in

On the enigma of Nb-Ta and Zr-Hf fractionation—A critical review

  • Published:
Journal of Earth Science Aims and scope Submit manuscript

Abstract

Elemental ratios Zr/Hf and Nb/Ta are expected to be constant and of chondritic value (∼36.30 and ∼17.57, respectively) in mantle and mantle-derived rocks. Studies in recent years have shown, however, that these two ratios do vary in some of these rocks. For example, MORB-like seamount lavas from flanks of the East Pacific Rise (EPR) show a correlated Zr/Hf (∼25–50) and Nb/Ta (∼9–18) variation. These two ratios are also correlated with ratios of more incompatible over less incompatible elements (e.g., La/Sm, Rb/Cs, Th/U, Nb/U, Sm/Yb) and with radiogenic isotope ratios (e.g., 87Sr/86Sr, 143Nd/144Nd). Furthermore, abyssal peridotites, which are melting residues for MORB, also show a huge correlated variation between Zr/Hf (∼2.5–335) and Nb/Ta (∼1–170). All these observations plus a correlated variation between Zr/Hf (∼22–48) and Nb/Ta (∼10–23) in lunar rocks are consistent with the Zr-Hf and Nb-Ta fractionation being of magmatic origin. This contrasts with the common view that geochemical processes cannot readily fractionate them. As charges and ionic radii are the principal factors in the general theory of elemental fractionation, this theory cannot explain the fractionation of these two element pairs with the same charges (i.e., 5+ for Nb and Ta, and 4+ for Zr and Hf) and essentially the same ionic size (i.e., R Nb/R Ta=1.000, R Zr/R Hf=1.006 to ∼1.026 for coordination numbers of 6, 7, 8 and 12). We explore the possibilities of other factors and processes (e.g., mass-dependent fractionation during magmatism) that may cause the observed Nb-Ta and Zr-Hf fractionation. We emphasize that understanding the correlated Nb-Ta and Zr-Hf fractionation “known” to take place during magmatism is fundamental for improved understanding of elemental fractionations through other earth processes in various tectonic environments, including the origin and evolution of continental crust, which has a characteristic subchondritic Nb/Ta value of ∼11-12.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References Cited

  • Aulbach, S., O’Reilly, S. Y., Griffin, W. L., et al., 2008. Sub continental Lithospheric Mantle Origin of High Niobium/Tantalum Ratios in Eclogites. Nature Geoscience, 1(7): 468–472

    Article  Google Scholar 

  • Blundy, J., Wood, B., 1994. Prediction of Crystal-Melt Partition Coefficients from Elastic Moduli. Nature, 372(6505): 452–454

    Article  Google Scholar 

  • Blundy, J., Wood, B., 2003. Partitioning of Trace Elements between Crystals and Melts. Earth and Planetary Science Letters, 210(3–4): 383–397

    Article  Google Scholar 

  • Bougault, H., Joron, J. L., Treuil, M., 1979. Alteration, Fractional Crystallization, Partial Melting, Mantle Properties from Trace Elements in Basalts Recovered in the North Atlantic. In: Talwani, M., Harrison, C. G., Hayes, D. E., eds., Deep Drilling Results in the North Atlantic Ocean Crust. Maurice Ewing Series, 2: 352–368

  • Brenan, J. M., Shaw, H. F., Ryerson, F. J., et al., 1995. Mineral-Aqueous Fluid Partitioning of Trace Elements at 900 °c and 2.0 GPa: Constraints on the Trace Element Chemistry of Mantle and Deep Crustal Fluids. Geochimica et Cosmochimica Acta, 59(16): 3331–3350

    Article  Google Scholar 

  • Brice, J. C., 1975. Some Thermodynamic Aspects of the Growth of Strained Crystals. Journal of Crystal Growth, 28(2): 249–253

    Article  Google Scholar 

  • Dautria, J. M., Dupuy, C., Takherist, D., et al., 1992. Carbonate Metasomatism in the Lithospheric Mantle: Peridotitic Xenoliths from a Melilititic District of the Sahara Basin. Contributions to Mineralogy and Petrology, 111(1): 37–52

    Article  Google Scholar 

  • Dupuy, C., Liotard, J. M., Dostal, J., 1992. Zr-Hf Fractionation in Intraplate Basaltic Rocks: Carbonate Metasomatism in the Mantle Source. Geochimica et Cosmochimica Acta, 56(6): 2417–2423

    Article  Google Scholar 

  • Elliott, T., Plank, T., Zindler, A., et al., 1997. Element Transport from Slab to Volcanic Front at the Mariana Arc. Journal of Geophysical Research, 102(B7): 14991–15019

    Article  Google Scholar 

  • Fábio, R. D. de A., Möller, P., Dulski, P., 2002. Zr-Hf in Carbonatites and Alkaline Rocks: New Data and a Re-evaluation. Revista Brasileira de Geociencias, 32(3): 361–370

    Google Scholar 

  • Foley, S. F., Barth, M. G., Jenner, G. A., 2000. Rutile/Melt Partition Coefficients for Trace Elements and an Assessment of the Influence of Rutile on the Trace Element Characteristics of Subduction Zone Magmas. Geochimica et Cosmochimica Acta, 64(5): 933–938

    Article  Google Scholar 

  • Foley, S., Tiepolo, M., Vannucci, R., 2002. Growth of Early Continental Crust Controlled by Melting of Amphibolite in Subduction Zones. Nature, 417(6891): 837–840

    Article  Google Scholar 

  • Gao, J., John, T., Klemd, R., et al., 2007. Mobilization of Ti-Nb-Ta during Subduction: Evidence from Rutile-Bearing Dehydration Segregations and Veins Hosted in Eclogite, Tianshan, NW China. Geochimica et Cosmochimica Acta, 71(20): 4974–4996

    Article  Google Scholar 

  • Goldschmidt, V. M., 1937. The Principles of Distribution of Chemical Elements in Minerals and Rocks. J. Chem. Soc., 140: 655–673

    Article  Google Scholar 

  • Green, T. H., 1995. Significance of Nb/Ta as an Indicator of Geochemical Processes in the Crust-Mantle System. Chemical Geology, 120: 347–359

    Article  Google Scholar 

  • Green, T. H., Blundy, J. D., Adam, J., et al., 2000. SIMS Determination of Trace Element Partition Coefficients between Garnet, Clinopyroxene and Hydrous Basaltic Liquids at 2–7.5 GPa and 1 080–1 200 °C. Lithos, 53(3–4): 165–187

    Article  Google Scholar 

  • Hofmann, A. W., 1988. Chemical Differentiation of the Earth: The Relationship between Mantle, Continental Crust, and Oceanic Crust. Earth and Planetary Science Letters, 90(3): 297–314

    Article  Google Scholar 

  • Hofmann, A. W., 1997. Mantle Geochemistry: The Message from Oceanic Volcanism. Nature, 385(6613): 219–229

    Article  Google Scholar 

  • Hofmann, A. W., Jochum, K. P., Seufert, M., et al., 1986. Nb and Pb in Oceanic Basalts: New Constraints on Mantle Evolution. Earth and Planetary Science Letters, 79(1–2): 33–45

    Article  Google Scholar 

  • Huang, X. L., Wang, R. C., Chen, X. M., et al., 2002. Vertical Variations in the Mineralogy of the Yichun Topaz-Lepidolite Granite, Jiangxi Province, Southern China. The Canadian Mineralogist, 40: 1047–1068

    Article  Google Scholar 

  • Jochum, K. P., Seufert, H. M., Spettel, B., et al., 1986. The Solar-System Abundances of Nb, Ta, Y and the Relative Abundances of Refractory Lithophile Elements in Differentiated Planetary Bodies. Geochimica et Cosmochimica Acta, 50(6): 1173–1183

    Article  Google Scholar 

  • Klein, C., Hurlbut, C. S., 1999. Manual of Mineralogy (after James D. Dana). John Wiley & Sons, New York, NY, United States. 596

    Google Scholar 

  • Klemme, S., Blundy, J. D., Wood, B. J., 2002. Experimental Constraints on Major and Trace Element Partitioning during Partial Melting of Eclogite. Geochimica et Cosmochimica Acta, 66(17): 3109–3123

    Article  Google Scholar 

  • Kogiso, T., Tatsumi, Y., Nakano, S., 1997. Trace Element Transport during Dehydration Processes in the Subducted Oceanic Crust: 1, Experiments and Implications for the Origin of Ocean Island Basalts. Earth and Planetary Sci ence Letters, 148(1–2): 193–205

    Article  Google Scholar 

  • Linnen, R. L., Keppler, H., 2002. Melt Composition Control of Zr/Hf Fractionation in Magmatic Processes. Geochimica et Cosmochimica Acta, 66(18): 3293–3301

    Article  Google Scholar 

  • McDonough, W. F., Sun, S. S., 1995. The Composition of the Earth. Chemical Geology, 120(3–4): 223–253.

    Article  Google Scholar 

  • Mo, X. X., Niu, Y. L., Dong, G. C., et al., 2008. Contribution of Syncollisional Felsic Magmatism to Continental Crust Growth: A Case Study of the Paleogene Linzizong Volcanic Succession in Southern Tibet. Chemical Geology, 250(1–4): 49–67

    Article  Google Scholar 

  • Muenker, C., Pfaender, J. A., Weyer, S., et al., 2003. Evolution of Planetary Cores and the Earth-Moon System from Nb/Ta Systematics. Science, 301(5629): 84–87

    Article  Google Scholar 

  • Nagasawa, H., 1966. Trace Element Partition Coefficient in Ionic Crystals. Science, 152(3723): 767–769

    Article  Google Scholar 

  • Niu, Y. L., 2004. Bulk-Rock Major and Trace Element Compositions of Abyssal Peridotites: Implications for Mantle Melting, Melt Extraction and Post-Melting Processes beneath Mid-Ocean Ridges. Journal of Petrology, 45(12): 2423–2458

    Article  Google Scholar 

  • Niu, Y. L., 2005. Generation and Evolution of Basaltic Magmas: Some Basic Concepts and a New View on the Origin of Mesozoic-Cenozoic Basaltic Volcanism in Eastern China. Geological Journal of China Universities, 11(1): 9–46 (in Chinese with English Abstract)

    Google Scholar 

  • Niu, Y. L., Batiza, R., 1997. Trace Element Evidence from Seamounts for Recycled Oceanic Crust in the Eastern Pacific Mantle. Earth and Planetary Science Letters, 148(3–4): 471–483

    Article  Google Scholar 

  • Niu, Y. L., Hekinian, R., 1997. Basaltic Liquids and Harzburgitic Rresidues in the Garrett Transform: A Case Study at Fast-Spreading Ridges. Earth and Planetary Science Letters, 146(1–2): 243–258

    Article  Google Scholar 

  • Niu, Y. L., O’Hara, M. J., 2003. The Origin of Ocean Island Basalts (OIB): A New Perspective from Petrology, Geochemistry and Mineral Physics Considerations. Journal of Geophysical Research, 108(B4): 1–19

    Article  Google Scholar 

  • Niu, Y. L., O’Hara, M. J., 2009. MORB Mantle Hosts the Missing Eu (Sr, Nb, Ta and Ti) in the Continental Crust: New Perspectives on Crust-Mantle Differentiation and Chemical Structure of Oceanic Upper Mantle. Lithos, 112(1–2): 1–17

    Article  Google Scholar 

  • Niu, Y. L., Regelous, M., Wendt, I. J., et al., 2002. Geochemistry of Near-EPR Seamounts: Importance of Source vs. Process and the Origin of Enriched Mantle Component. Earth and Planetary Science Letters, 199(3–4): 327–345

    Article  Google Scholar 

  • Norton, D. L., Dutrow, B. L., 2001. Complex Behavior of Magma-Hydrothermal Processes: Role of Supercritical Fluid. Geochimica et Cosmochimica Acta, 65(21): 4009–4017

    Article  Google Scholar 

  • Onuma, N., Higuchi, H., Wakita, H., et al., 1968. Trace Element Partition between Two Pyroxenes and the Host Lava. Earth and Planetary Science Letters, 5(1): 47–51

    Article  Google Scholar 

  • Palme, H., O’Neill, H. St. C., 2003. Cosmochemical Estimates of Mantle Composition. Treatise on Geochemistry, 2: 1–38

    Google Scholar 

  • Pfaender, J. A., Muenker, C., Stracke, A., et al., 2007. Nb/Ta and Zr/Hf in Ocean Island Basalts-Implications for Crust-Mantle Differentiation and the Fate of Niobium. Earth and Planetary Science Letters, 254(1–2): 158–172

    Article  Google Scholar 

  • Ringwood, A. E., 1955. The Principles Governing Trace Element Distribution during Magmatic Crystallization-Part I: The Influence of Electronegativity. Geochimica et Cosmochimica Acta, 7(3–4): 189–202

    Article  Google Scholar 

  • Rollinson, H., 1993. Using Geochemical Data: Evaluation, Presentation, Interpretation. Longman Scientific & Technical. John Wiley & Sons, New York. 352

    Google Scholar 

  • Rudnick, R. L., Barth, M., Horn, I., et al., 2000. Rutile-Bearing Refractory Eclogites: Missing Link between Continents and Depleted Mantle. Science, 287(5451): 278–281

    Article  Google Scholar 

  • Rudnick, R. L., Fountain, D. M., 1995. Nature and Composition of the Continental Crust: A Lower Crustal Perspective. Review of Geophysics, 33(3): 267–309

    Article  Google Scholar 

  • Rudnick, R. L., Gao, S., 2003. Composition of the Continental Crust. Treatise on Geochemistry, 3: 1–64

    Google Scholar 

  • Shannon, R. D., 1976. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. Acta Cryst., A 32: 751–767

    Article  Google Scholar 

  • Speer, J. A., Cooper, B. J., 1982. Crystal Structure of Synthetic Hafnon, HfSiO4, Comparison with Zircon and the Actinide Orthosilicates. American Mineralogist, 67: 804–808

    Google Scholar 

  • Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics in Ocean Basalts: Implications for Mantle Composition and Processes. Geological Society Special Publications, 42: 313–345

    Article  Google Scholar 

  • Tatsumi, Y., Hamilton, D. L., Nesbitt, R. W., 1986. Chemical Characteristics of Fluid Phase Released from a Subducted Lithosphere and Origin of Arc Magmas: Evidence from High-Pressure Experiments and Natural Rocks. Journal of Volcanology and Geothermal Research, 29(1–4): 293–309

    Article  Google Scholar 

  • Taylor, S. R., 1967. The Origin and Growth of Continents. Tec tonophysics, 4(1): 17–34

    Google Scholar 

  • Taylor, S. R., 1977. Island Arc Models and the Composition of the Continental Crust. In: Talwani, M., Pitman III, W. C., eds., Island Arcs, Deep Sea Trenches, and Back-Arc Basins. Maurice Ewing Series, American Geophysical Union, Washington, D.C., 1: 325–335

    Google Scholar 

  • Taylor, S. R., McLennan, S. M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell, Oxford. 312

    Google Scholar 

  • Tiepolo, M., Vannucci, R., Oberti, R., et al., 2000. Nb and Ta Incorporation and Fractionation in Titanian Pargasite and Kaersutite: Crystal-Chemical Constraints and Implications for Natural Systems. Earth and Planetary Science Letters, 176(2): 185–201

    Article  Google Scholar 

  • Wade, J., Wood, B. J., 2001. The Earth’s ‘Missing’ Niobium may be in the Core. Nature, 409(6816): 75–78

    Article  Google Scholar 

  • Wang, R. C., Fontan, F., Xu, S. J., et al., 1996. Hafnian Zircon from the Apical Part of the Suzhou Granite, China. The Canadian Mineralogist, 34: 1001–1010

    Google Scholar 

  • Wang, R. C., Zhao, G. T., Lu, J. J., et al., 2000. Chemistry of Hf-Rich Zircons from the Laoshan I- and A-Type Granites, Eastern China. Mineralogical Magazine, 64: 867–877

    Article  Google Scholar 

  • Wanke, H., Palme, H., Baddenhausen, H., et al., 1975. New Data on the Chemistry of Lunar Samples: Primary Matter in the Lunar Highlands and the Bulk Composition of the Moon. Pro. Lunar Sci., 6: 1313–1340

    Google Scholar 

  • Weyer, S., Munker, C., Mezger, K., 2003. Nb/Ta, Zr/Hf and REE in the Depleted Mantle: Implications for the Differentiation History of the Crust-Mantle System. Earth and Planetary Science Letters, 205(3–4): 309–324

    Article  Google Scholar 

  • Wood, B. J., Blundy, J. D., 1997. A Predictive Model for Rare Earth Element Partitioning between Clinopyroxene and Anhydrous Silicate Melt. Contributions to Mineralogy and Petrology, 129(2–3): 166–181

    Article  Google Scholar 

  • Workman, R. K., Hart, S. R., 2005. Major and Trace Element Composition of the Depleted MORB Mantle (DMM). Earth and Planetary Science Letters, 231(1–2): 53–72

    Article  Google Scholar 

  • Xiao, Y. L., Sun, W. D., Hoefs, J., et al., 2006. Making Continental Crust through Slab Melting: Constriants from Niobium-Tantalum Fractionation in UHP Metamorphic Rutile. Geochimica et Cosmochimica Acta, 70(18): 4770–4782

    Article  Google Scholar 

  • Zhang, A. C., Wang, R. C., Hu, H., et al., 2004. Chemical Evolution of Nb-Ta Oxides and Zircon from the Koktokay No.3 Granitic Pegmatite, Altai, Northwestern China. Mineralogical Magazine, 68: 739–756

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaoling Niu  (牛耀龄).

Additional information

This study was supported by the Chinese 111 Project (No. B07011), and the National Natural Science Foundation of China (No. 91014003).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, H., Niu, Y., Zhao, Z. et al. On the enigma of Nb-Ta and Zr-Hf fractionation—A critical review. J. Earth Sci. 22, 52–66 (2011). https://doi.org/10.1007/s12583-011-0157-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12583-011-0157-x

Key Words

Navigation