Skip to main content
Log in

The Alpe Arami story: Triumph of data over prejudice

  • Published:
Journal of Earth Science Aims and scope Submit manuscript

Abstract

The Alpe Arami garnet peridotite of the Southern Swiss Alps is associated with eclogites and included within quartzofeldspathic gneisses. Controversy has swirled around the depth of origin of this massif since the 1970s when application of the newly-developed technique of thermobarometry suggested a depth of last equilibration of greater than 120 km. Such controversy accelerated in 1996 when we reported microstructural evidence of extensive precipitation of ilmenite and spinel from olivine and proposed a much greater depth of origin. Subsequent experiments showed that it was possible to dissolve the observed amount of TiO2 in olivine, but only at depths in excess of 300 km, agreeing with the earlier proposal. In 1999 we added new, independent, evidence concerning exsolution of high-pressure clinoenstatite from diopside that in-and-of-itself required a depth of origin in excess of 250 km. Subsequently, we also added evidence from the surrounding eclogites of very high pressures and experimental evidence that the pyroxenes included in the amoeboid garnets of this rock had exsolved from a majoritic parent at perhaps even greater pressures. In refutation of the first two of these observations, suggestions were made that (i) we had made a serious error in our estimate of how much ilmenite was present in olivine (and therefore how much TiO2 had been dissolved in olivine); (ii) the ilmenite had not been exsolved from olivine but former titanian clinohumite had been present and broke down to yield the ilmenite; (iii) the pyroxene exsolved from diopside had been high-temperature clinoenstatite. In all three of these cases, the alternatives offered were claimed to be accommodated at low pressures. Here we review the essence of this controversy and show that the only scenario that can explain all of the data is the one that we originally proposed; indeed, the more recent data have strongly supported that interpretation and pushed the minimum origin of the massif to depths approaching 400 km.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References Cited

  • Akaogi, M., Ito, E., Navrotsky, A., 1989. Olivine Modified Spinel-Spinel Transition in the System Mg2SiO4-Fe2SiO4: Calorimetric Measurements, Thermochemical Calculation, and Geophysical Application. J. Geophys. Res., 94: 15671–15685

    Article  Google Scholar 

  • Angel, R. J., Chopelas, A., Ross, N. L. 1992. Stability of High-Density Clinoenstatite at Upper-Mantle Pressures. Nature, 358(6384): 322–324

    Article  Google Scholar 

  • Arlt, T., Kunz, M., Stolz, J., et al., 2000. P-T-X Data on P21/c-Clinopyroxenes and Their Displacive Phase Transitions. Contrib. Mineral. Petrol., 138(1): 35–45

    Article  Google Scholar 

  • Bakun-Czubarow, N., 1992. Quartz Pseudomorphs after Coesite and Quartz Exsolutions in Eclogitic Omphacites of the Zlote Mountains in the Sudetes (SW Poland). Archiwum Mineralogiczne, 48(1–2): 3–25

    Google Scholar 

  • Becker, H., 1993. Garnet Peridotite and Eclogite Sm-Nd Mineral Ages from the Lepontine Dome (Swiss Alps): New Evidence for Eocene High-Pressure Metamorphism in the Central Alps. Geology, 21: 599–602

    Article  Google Scholar 

  • Boyd, F. R., 1973. A Pyroxene Geotherm. Geochimica et Cosmochimica Acta, 37(12): 2533–2546

    Article  Google Scholar 

  • Bozhilov, K. N., Green, H. W., Dobrzhinetskaya, L. F., 2003. Quantitative 3D Measurement of Ilmenite Abundance in Alpe Arami Olivine by Confocal Microscopy: Confirmation of High-Pressure Origin. Am. Mineral., 88: 596–603

    Google Scholar 

  • Bozhilov, K. N., Green, H. W., Dobrzhinetskaya, L., 1999. Clinoenstatite in Alpe Arami Peridotite: Additional Evidence for very High Pressure. Science, 284(5411): 129–132

    Article  Google Scholar 

  • Brenker, F. E., Brey, G. P., 1997. Reconstruction of the Exhumation Path of the Alpe Arami Garnet-Peridotite Body from Depths Exceeding 160 km. J. Metamorphic Geology, 15(5): 581–592

    Article  Google Scholar 

  • Buiskool-Toxopeus, J. M. A., 1976. Petrofabrics, Microtextures and Dislocation Substructures of Olivine in a Peridotite Mylonite (Alpe Arami, Switzerland). Leidse Geol. Med., 51(1): 1–35

    Google Scholar 

  • Dobrzhinetskaya, L. F., Bozhilov, K. N., Green, H. W., 2000. The Solubility of TiO2 in Olivine: Implications for the Mantle Wedge Environment. Chem. Geol., 160(4): 357–370

    Article  Google Scholar 

  • Dobrzhinetskaya, L. F., Green, H. W., Renfro, A. P., et al., 2004. Precipitation of Pyroxenes and Mg2SiO4 from Majoritic Garnet: Simulation of Peridotite Exhumation from Great Depth. Terra Nova, 16(6): 325–330

    Article  Google Scholar 

  • Dobrzhinetskaya, L. F., Green, H. W., Renfro, A. P., et al., 2005. Decompression of Majoritic Garnet: An Experimental Investigation of Mantle Peridotite Exhumation. In: Chen, J. H., Wang, Y. B., Duffy, T. S., et al., eds., Advances in High-Pressure Technology for Geophysical Applications. Elsevier, Amsterdam. 265–287

    Chapter  Google Scholar 

  • Dobrzhinetskaya, L. F., Green, H. W., Wang, S., 1996. Alpe Arami: A Peridotite Massif from Depths of more than 300 km. Science, 271(5257): 1841–1845

    Article  Google Scholar 

  • Dobrzhinetskaya, L. F., Schweinehage, R., Massonne, H. J., et al., 2002. Silica Precipitates in Omphacite from Eclogite at Alpe Arami, Switzerland: Evidence of Deep Subduction. J. Metamorphic Geology, 20(5):481–492

    Article  Google Scholar 

  • Ernst, W. G., 1977. Mineralogic Study of Eclogitic Rocks from Alpe Arami, Lepontine Alps, Southern Switzerland. J. Petrology, 18(3): 371–398

    Google Scholar 

  • Ernst, W. G., 1978. Petrochemical Study of Lherzolitic Rocks from the Western Alps. J. Petrology, 19(3): 341–392

    Google Scholar 

  • Ernst, W. G., 1981. Petrogenesis of Eclogites and Peridotites from the Western and Ligurian Alps. Am. Mineral., 66: 443–472

    Google Scholar 

  • Gayk, T., Kleinschrodt, R., Langosch, A., et al., 1995. Quartz Exsolution in Clinopyroxene of High-Pressure Granulite from the Münchberg Massif. European Journal of Mineralogy, 7: 1217–1220

    Google Scholar 

  • Gebauer, D., 1996. A P-T-t Path for an (Ultra-) High-Pressure Ultramafic/Mafic Rock-Association and Its Felsic Country-Rocks Based on SHRIMP-Dating of Magmatic and Metamorphic Zircon Domains, Example: Alpe Arami (Central Swiss Alps). In: Basu, A., Hart, S. R., eds., Earth Processes: Reading the Isotopic Code. Geophysical Monograph, 95: 307–329

  • Green, H. W., Dobrzhinetskaya, L. F., Bozhilov, K. N., 1997a. Determining the Origin of Ultra-high Pressure Lherzolites (Response). Science, 278: 704–707

    Google Scholar 

  • Green, H. W., Dobrzhinetskaya, L. F., Riggs, E. M., et al., 1997b. Alpe Arami: A Peridotite Massif from the Mantle Transition Zone? Tectonophysics, 279(1–4): 1–21

    Article  Google Scholar 

  • Green, H. W., Dobrzhinetskaya, L., Bozhilov, K. N., 2000. Mineralogical and Experimental Evidence for very Deep Exhumation from Subduction Zones. J. Geodynamics, 30(1–2): 61–76

    Article  Google Scholar 

  • Hacker, B. R., Sharp, T., Zhang, R. Y., et al., 1997. Determining the Origin of Ultrahigh-Pressure Lherzolites (Discussion). Science, 278(5338): 701–707

    Article  Google Scholar 

  • Haggerty, S. E., Sautter, V., 1990. Ultradeep (Greater than 300 Kilometers), Ultramafic Upper Mantle Xenoliths. Science, 248(4958): 993–996

    Article  Google Scholar 

  • Hermann, J., O’Neill, H. S. C., Berry, A. J., 2005. Titanium Solubility in Olivine in the System TiO2-MgO-SiO2: No Evidence for an Ultra-deep Origin of Ti-Bearing Olivine. Contrib. Mineral. Petrol., 148(6): 746–760

    Article  Google Scholar 

  • Irifune, T., Sekine, T., Ringwood, A. E., et al., 1986. The Eclogite-Garnetite Transformation at High Pressure and Some Geophysical Implications. Earth and Planetary Science Letters, 77(2): 245–256

    Article  Google Scholar 

  • Katayama, I., Parkinson, C. D., Okamoto, K., et al., 2000. Supersilicic Clinopyroxene and Silica Exsolution in UHPM Eclogite and Pelitic Gneiss from the Kokchetav Massif, Kazakhstan. Am. Mineral., 85: 1368–1374

    Google Scholar 

  • Liu, X. W., Jin, Z. M., Green, H. W., 2007. Clinoenstatite Exsolution in Diopsidic Augite of Dabieshan: Garnet Peridotite from Depth of 300 km. Am. Mineral., 92: 546–552

    Article  Google Scholar 

  • Medaris, L. G., Carswell, D. A., 1990. The Petrogenesis of Mg-Cr Garnet Peridotites in European Metamorphic Belts. In: Carswell, D. A., ed., Eclogite Facies Rocks. Blackie-Glasgow, London. 260–290

    Google Scholar 

  • Möckel, J. R., 1969. Structural Petrology of the Garnet Peridotite of Alpe Arami (Ticino, Switzerland). Leidse Geol. Med., 42: 61–130

    Google Scholar 

  • Nee, P. Y., Zhao, S., Green, H. W., et al., 2009. Experimental Studies of the CaEsk Component in Pyroxene at High PT in Multianvil Apparatus. American Geophysical Union, Fall Meet, Abstract, MR13A-1657

  • Nestola, F., Tribaudino, M., Ballaran, T. B., 2004. High Pressure Behavior, Transformation and Crystal Structure of Synthetic Iron-Free Pigeonite. Am. Mineral., 89: 189–196

    Google Scholar 

  • Nimis, P., Trommsdorff, V., 2001a. Revised Thermobarometry of Alpe Arami and Other Garnet Peridotites from the Central Alps. J. Petrology, 42(1): 103–115

    Article  Google Scholar 

  • Nimis, P., Trommsdorff, V., 2001b. Comment on ‘New Constraints on the P-T Evolution of the Alpe Arami Garnet Peridoite Body (Central Alps, Switzerland)’ by Paquin & Altherr (2001). J. Petrology, 42(9): 1773–1779

    Article  Google Scholar 

  • Olker, B., Altherr, R., Paquin, J., 2003. Fast Exhumation of the Ultrahigh-Pressure Alpe Arami Garnet Peridotite (Central Alps, Switzerland): Constraints from Geospeedometry and Thermal Modelling. J. Metamorphic Geology, 21(4): 395–402

    Article  Google Scholar 

  • Paquin, J., Altherr, R., 2001a. New Constraints on the P-T Evolution of the Alpe Arami Garnet Peridotite Body (Central Alps, Switzerland). J. Petrology, 42(6): 1119–1140

    Article  Google Scholar 

  • Paquin, J., Altherr, R., 2001b. ’New Constraints on the P-T Evolution of the Alpe Arami Garnet Peridoite Body (Central Alps, Switzerland)’: Reply to Comment by Nimis and Trommsdorff (2001). J. Petrology, 42(9): 1781–1787

    Article  Google Scholar 

  • Paquin, J., Altherr, R., 2002. Subduction-Related Lithium Metasomatism during Exhumation of the Alpe Arami Ultrahigh-Pressure Garnet Peridotite (Central Alps, Switzerland). Contrib. Mineral. Petrol., 143(5): 623–640

    Article  Google Scholar 

  • Paquin, J., Altherr, R., Ludwig, T., 2004. Li-Be-B Systematics in the Ultrahigh-Pressure Garnet Peridotite from Alpe Arami (Central Swiss Alps): Implications for Slab-to-Mantle Wedge Transfer. Earth and Planetary Science Letters, 218(3–4): 507–519

    Article  Google Scholar 

  • Risold, A. C., Trommsdorff, V., Grobéty, B., 2001. Genesis of Ilmenite Rods and Palisades along Humite-Type Defects in Olivine from Alpe Arami. Contrib. Mineral. Petrol., 140(5): 619–628

    Article  Google Scholar 

  • Robinson, P., Ross, M., Nord, G. L., et al., 1977. Exsolution Lamellae in Augite and Pigeonite: Fossil Indicators of Lattice Parameters at High Temperature and Pressure. Am. Mineral., 62: 857–873

    Google Scholar 

  • Shinmei, T., Tomioka, N., Fujino, K., et al., 1999. In Situ X-Ray Diffraction Study of Enstatite up to 12 GPa and 1 473 K and Equations of State. Am. Mineral., 84: 1588–1594

    Google Scholar 

  • Smith, D. C., 1988. A Review of the Peculiar Mineralogy of the ‘Norwegian Coesite-Eclogite Province’, with Crystal-Chemical. Petrological, Geochemical and Geodynamical Notes and an Extensive Bibliography. In: Smith, D. C., ed., Eclogite and Eclogite-Facies Rocks. Elsevier, Amsterdam. 1–206

    Google Scholar 

  • Smith, D. C., Cheeney, R. F., 1980. Orientated Needles of Quartz in Clinopyroxene: Evidence for Exsolution of SiO2 from a Non-Stoichiometric Supersilicic “Clinopyroxene”. 26th International Geol. Congress (Abstract), Paris, 1: 14

    Google Scholar 

  • Smyth, J. R., 1980. Cation Vacancies and the Crystal Chemistry of Breakdown Reactions in Kimberlitic Omphacites. Am. Mineral., 65: 1185–1191

    Google Scholar 

  • Spengler, D., Van-Roermund, H. L. M., Drury, M. R., et al., 2006. Deep Origin and Hot Melting of an Archaean Orogenic Peridotite Massif in Norway. Nature, 440(7086): 913–917

    Article  Google Scholar 

  • Tinker, D., Lesher, C. E., 2001. Solubility of TiO2 in Olivine from 1 to 8 GPa. EOS Transactions of the American Geophysical Union, Fall Meeting 2001, Abstract #V51B-1001

  • Tribaudino, M., Nestola, F., Camara, F., et al., 2002. The High-Temperatur P21/c-C2/c Phase Transition in Fe-Free Pyroxene (Ca0.15Mg1.85Si2O6): Structural and Thermodynamic Behavior. Am. Mineral., 87: 648–657

    Google Scholar 

  • Tribaudino, M., Prencipe, M., Bruno, M., et al., 2000. High-Pressure Behaviour of Ca-Rich C2/c Clinopyroxenes along the Join Diopside-Enstatite (CaMgSi2O6-Mg2Si2O6). Phys. Chem. Minerals, 27(9): 656–664

    Article  Google Scholar 

  • Tsai, C. H., Liou, J. G., 2000. Eclogite-Facies Relics and Inferred Ultrahigh-Pressure Metamorphism in the North Dabie Complex, Central-Eastern China. Am. Mineral., 85: 1–8

    Google Scholar 

  • Van-Ark, E. M., Ulmer, P., Risold, A. C., et al., 1998. TiO2 Solubility in Mantle Olivine as a Function of Pressure, Temperature, a(SiO2) and f(H2). EOS Trans. Am. Geophys. Union, 79(17): 164

    Google Scholar 

  • Van Roermund, H. L. M., Drury, M. R., 1998. Ultra-high Pressure (P>6 GPa) Garnet Peridotites in Western Norway: Exhumation of Mantle Rocks from >185 km Depth. Terra Nova, 10(6): 295–301

    Article  Google Scholar 

  • Van Roermund, H. L. M., Drury, M. R., Barnhoorn, A., et al., 2001. Relict Majoritic Garnet Microstructures from Ultra-deep Orogenic Peridotites in Western Norway. J. Petrology, 42(1): 117–130

    Article  Google Scholar 

  • Wenk, E., 1970. Zur Regionalmetamorphose und Ultrametamorphose im Lepontin Regional Metamorphism and Ultrametamorphism in the Lepontine Alps. Fortschr. Miner., 47(1): 34–51 (in German)

    Google Scholar 

  • Wenk, E., Keller, F., 1969. Isograde in Amphibolitserien der Zentralalpen Isograds in Amphibolite Series of the Central Alps. Schweiz. Mineral. Petrogr. Mitt., 49(1): 157–198 (in German)

    Google Scholar 

  • Wenk, E., Schwander, H., Stern, W., 1974. On Calcic Amphiboles and Amphibolites from the Lepontine Alps. Schweiz. Mineral. Petrogr. Mitt., 54(1): 97–149

    Google Scholar 

  • Woodland, A. B., Angel, R. L., 1997. Reversal of the Orthoferrosilite-High-Pressure Clinoferrosilite Transition, a Phase Diagram for FeSiO3 and Implications for the Mineralogy of the Earth’s Upper Mantle. Eur. J. Mineral., 9: 245

    Google Scholar 

  • Yamaguchi, Y., Akai, J., Tomita, K., 1978. Clinoamphibole Lamellae in Diopside of Garnet Lherzolite from Alpe Arami, Bellinzona, Switzerland. Contrib. Mineral. Petrol., 66(3): 263–270

    Article  Google Scholar 

  • Zhang, L. F., Song, S. G., Liou, J. G., et al., 2005. Relict Coesite Exsolution in Omphacite from Western Tianshan Eclogites, China. Am. Mineral., 90: 181–186

    Article  Google Scholar 

  • Zhang, R. Y., Hirajima, T., Banno, S., et al., 1995. Petrology of Ultra-high Pressure Rocks from the Southern Sulu Region, Eastern China. J. Metamorphic Geology, 13(6): 659–675

    Article  Google Scholar 

  • Zhang, Z. M., Shen, K., Xiao, Y. L., et al., 2006. Mineral and Fluid Inclusions in Zircon of UHP Metamorphic Rocks from the CCSD-Main Drill Hole: A Record of Metamorphism and Fluid Activity. Lithos, 92(3–4): 378–398

    Article  Google Scholar 

  • Zhu, Y. F., Ogasawara, Y., 2002. Phlogopite and Coesite Exsolution from Super-silicic Clinopyroxene. International Geology Review, 44(9): 831–836

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harry W. Green II.

Additional information

This study was supported by the US National Science Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Green, H.W., Dobrzhinetskaya, L.F. & Bozhilov, K.N. The Alpe Arami story: Triumph of data over prejudice. J. Earth Sci. 21, 731–743 (2010). https://doi.org/10.1007/s12583-010-0130-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12583-010-0130-0

Key Words

Navigation