Skip to main content
Log in

IVC measurement for the noninvasive evaluation of central venous pressure

  • Review Article
  • Published:
Journal of Echocardiography Aims and scope Submit manuscript

Abstract

Central venous pressure (CVP) is one of only a handful of variables that can be used to assess a patient’s volume status to attempt to optimize stroke volume. The gold standard method for assessing CVP is though pulmonary artery catheterization, which is invasive and risks severe complications such as pneumothorax and cardiac conduction abnormalities. Current noninvasive methods for estimating CVP such as jugular venous pressure assessment are imperfect with wide inter-examiner variability. The inferior vena cava (IVC) is a highly compliant vessel that uniquely does not constrict in response to hypovolemia, making it an ideal, noninvasive surrogate for the estimation of CVP. A range of IVC indices including minimum and maximum IVC diameter and fraction of IVC collapse with inspiration (known as collapsibility index) have been studied with highly variable results that range from excellent to poor correlation between these values and CVP. Despite this inconsistency in findings, multiple schemes have been proposed to attempt to estimate CVP from IVC measurements, but when prospectively tested, none has been shown to be accurate. Since the most recent 2015 American Society of Echocardiography guidelines, multiple studies have identified unique ways of improving the accuracy of IVC measurement, which could translate into better CVP estimation. The goal of this review is to summarize the many, often conflicting studies that exist in this area, and provide recommendations for future studies based on our findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CVP:

Central venous pressure

JVP:

Jugular venous pressure

IVC:

Inferior vena cava

ASE:

American Society of Echocardiography

BSA:

Body surface area

3D:

3-Dimensional

2D:

2-Dimensional

IVCDmax :

Maximum IVC diameter

IVCDmin :

Minimum IVC diameter measured during passive inspiration

IVCDsniff :

Minimum IVC diameter measured during sniff maneuver

IVCCImin :

IVC collapsibility index with minimum IVC diameter measured during passive inspiration

IVCCIsniff :

IVC collapsibility index with minimum IVC diameter measured during sniff maneuver

References

  1. Marik PE, Baram M, Vahid B. Does central venous pressure predict fluid responsiveness? A systematic review of the literature and the tale of seven mares. Chest. 2008;134:172–8.

    Article  PubMed  Google Scholar 

  2. Sprung CL, Pozen RG, Rozanski JJ, Pinero JR, Eisler BR, Castellanos A. Advanced ventricular arrhythmias during bedside pulmonary artery catheterization. Am J Med. 1982;72:203–8.

    Article  CAS  PubMed  Google Scholar 

  3. Ducatman BS, McMichan JC, Edwards WD. Catheter-induced lesions of the right side of the heart. A one-year prospective study of 141 autopsies. JAMA. 1985;253:791–5.

    Article  CAS  PubMed  Google Scholar 

  4. Harvey S, Harrison DA, Singer M, Ashcroft J, Jones CM, Elbourne D, Brampton W, Williams D, Young D, Rowan K. Assessment of the clinical effectiveness of pulmonary artery catheters in management of patients in intensive care (PAC-Man): a randomised controlled trial. Lancet (Lond, Engl). 2005;366:472–7.

    Article  Google Scholar 

  5. Binanay C, Califf RM, Hasselblad V, O’Connor CM, Shah MR, Sopko G, Stevenson LW, Francis GS, Leier C, Miller LW. Evaluation study of congestive heart failure and pulmonary artery catheterization effectiveness: the ESCAPE trial. JAMA. 2005;294:1625–33.

    Article  PubMed  Google Scholar 

  6. Hadian M, Pinsky MR. Evidence-based review of the use of the pulmonary artery catheter: impact data and complications. Crit Care (Lond, Engl). 2006;10(Suppl 3):S8.

    Article  Google Scholar 

  7. Cook DJ, Simel DL. The rational clinical examination. Does this patient have abnormal central venous pressure? JAMA. 1996;275:630–4.

    Article  CAS  PubMed  Google Scholar 

  8. Beigel R, Cercek B, Luo H, Siegel RJ. Noninvasive evaluation of right atrial pressure. J Am Soc Echocardiogr Off Publ Am Soc Echocardiogr. 2013;26:1033–42.

    Article  Google Scholar 

  9. Davison R, Cannon R. Estimation of central venous pressure by examination of jugular veins. Am Heart J. 1974;87:279–82.

    Article  CAS  PubMed  Google Scholar 

  10. Cook DJ. Clinical assessment of central venous pressure in the critically ill. Am J Med Sci. 1990;299:175–8.

    Article  CAS  PubMed  Google Scholar 

  11. Wang CS, FitzGerald JM, Schulzer M, Mak E, Ayas NT. Does this dyspneic patient in the emergency department have congestive heart failure? JAMA. 2005;294:1944–56.

    Article  CAS  PubMed  Google Scholar 

  12. Natori H, Tamaki S, Kira S. Ultrasonographic evaluation of ventilatory effect on inferior vena caval configuration. Am Rev Respir Dis. 1979;120:421–7.

    CAS  PubMed  Google Scholar 

  13. Nette RW, Ie EHY, Vletter WB, Krams R, Weimar W, Zietse R. Norepinephrine-induced vasoconstriction results in decreased blood volume in dialysis patients. Nephrol Dialysis Transplant Off Publ Eur Dial Transplant Assoc Eur Renal Assoc. 2006;21:1305–11.

    CAS  Google Scholar 

  14. Nakao S, Come PC, McKay RG, Ransil BJ. Effects of positional changes on inferior vena caval size and dynamics and correlations with right-sided cardiac pressure. Am J Cardiol. 1987;59:125–32.

    Article  CAS  PubMed  Google Scholar 

  15. Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, Flachskampf FA, Foster E, Goldstein SA, Kuznetsova T, Lancellotti P, Muraru D, Picard MH, Rietzschel ER, Rudski L, Spencer KT, Tsang W, Voigt J-U. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr Off Publ Am Soc Echocardiogr. 2015;28:1-39.e14.

    Article  Google Scholar 

  16. Finnerty NM, Panchal AR, Boulger C, Vira A, Bischof JJ, Amick C, Way DP, Bahner DP. Inferior vena cava measurement with ultrasound: what is the best view and best mode? West J Emerg Med. 2017;18:496–501.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Blehar DJ, Resop D, Chin B, Dayno M, Gaspari R. Inferior vena cava displacement during respirophasic ultrasound imaging. Crit Ultrasound J. 2012;4:18.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Mesin L, Pasquero P, Roatta S. Tracking and monitoring pulsatility of a portion of inferior vena cava from ultrasound imaging in long axis. Ultrasound Med Biol. 2019;45:1338–43.

    Article  PubMed  Google Scholar 

  19. Caplan M, Durand A, Bortolotti P, Colling D, Goutay J, Duburcq T, Drumez E, Rouze A, Nseir S, Howsam M, Onimus T, Favory R, Preau S. Measurement site of inferior vena cava diameter affects the accuracy with which fluid responsiveness can be predicted in spontaneously breathing patients: a post hoc analysis of two prospective cohorts. Ann Intensive Care. 2020;10:168.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Wallace DJ, Allison M, Stone MB. Inferior vena cava percentage collapse during respiration is affected by the sampling location: an ultrasound study in healthy volunteers. Acad Emerg Med Off J Soc Acad Emerg Med. 2010;17:96–9.

    Article  Google Scholar 

  21. Simonson JS, Schiller NB. Sonospirometry: a new method for noninvasive estimation of mean right atrial pressure based on two-dimensional echographic measurements of the inferior vena cava during measured inspiration. J Am Coll Cardiol. 1988;11:557–64.

    Article  CAS  PubMed  Google Scholar 

  22. Taniguchi T, Ohtani T, Nakatani S, Hayashi K, Yamaguchi O, Komuro I, Sakata Y. Impact of body size on inferior vena cava parameters for estimating right atrial pressure: a need for standardization? J Am Soc Echocardiogr Off Publ Am Soc Echocardiogr. 2015;28:1420–7.

    Article  Google Scholar 

  23. Kircher BJ, Himelman RB, Schiller NB. Noninvasive estimation of right atrial pressure from the inspiratory collapse of the inferior vena cava. Am J Cardiol. 1990;66:493–6.

    Article  CAS  PubMed  Google Scholar 

  24. Brennan JM, Blair JE, Goonewardena S, Ronan A, Shah D, Vasaiwala S, Kirkpatrick JN, Spencer KT. Reappraisal of the use of inferior vena cava for estimating right atrial pressure. J Am Soc Echocardiogr Off Publ Am Soc Echocardiogr. 2007;20:857–61.

    Article  Google Scholar 

  25. Nagueh SF, Kopelen HA, Zoghbi WA. Relation of mean right atrial pressure to echocardiographic and Doppler parameters of right atrial and right ventricular function. Circulation. 1996;93:1160–9.

    Article  CAS  PubMed  Google Scholar 

  26. Ommen SR, Nishimura RA, Hurrell DG, Klarich KW. Assessment of right atrial pressure with 2-dimensional and Doppler echocardiography: a simultaneous catheterization and echocardiographic study. Mayo Clin Proc. 2000;75:24–9.

    Article  CAS  PubMed  Google Scholar 

  27. Alavi-Moghaddam M, Kabir A, Shojaee M, Manouchehrifar M, Moghimi M. Ultrasonography of inferior vena cava to determine central venous pressure: a meta-analysis and meta-regression. Acta Radiol (Stockholm, Sweden). 2017;58:537–41.

    Google Scholar 

  28. Prekker ME, Scott NL, Hart D, Sprenkle MD, Leatherman JW. Point-of-care ultrasound to estimate central venous pressure: a comparison of three techniques. Crit Care Med. 2013;41:833–41.

    Article  PubMed  Google Scholar 

  29. Masugata H, Senda S, Okuyama H, Murao K, Inukai M, Hosomi N, Iwado Y, Noma T, Kohno M, Himoto T, Goda F. Age-related decrease in inferior vena cava diameter measured with echocardiography. Tohoku J Exp Med. 2010;222:141–7.

    Article  PubMed  Google Scholar 

  30. Moreno FL, Hagan AD, Holmen JR, Pryor TA, Strickland RD, Castle CH. Evaluation of size and dynamics of the inferior vena cava as an index of right-sided cardiac function. Am J Cardiol. 1984;53:579–85.

    Article  CAS  PubMed  Google Scholar 

  31. Magnino C, Omedè P, Avenatti E, Presutti D, Iannaccone A, Chiarlo M, Moretti C, Gaita F, Veglio F, Milan A. Inaccuracy of right atrial pressure estimates through inferior vena cava indices. Am J Cardiol. 2017;120:1667–73.

    Article  PubMed  Google Scholar 

  32. Nagdev AD, Merchant RC, Tirado-Gonzalez A, Sisson CA, Murphy MC. Emergency department bedside ultrasonographic measurement of the caval index for noninvasive determination of low central venous pressure. Ann Emerg Med. 2010;55:290–5.

    Article  PubMed  Google Scholar 

  33. Fields JM, Lee PA, Jenq KY, Mark DG, Panebianco NL, Dean AJ. The interrater reliability of inferior vena cava ultrasound by bedside clinician sonographers in emergency department patients. Acad Emerg Med Off J Soc Acad Emerg Med. 2011;18:98–101.

    Article  Google Scholar 

  34. Tobin MJ, Mador MJ, Guenther SM, Lodato RF, Sackner MA. Variability of resting respiratory drive and timing in healthy subjects. J Appl Physiol (Bethesda, Md). 1988;65:309–17.

    CAS  Google Scholar 

  35. Parreira VF, Bueno CJ, França DC, Vieira DSR, Pereira DR, Britto RR. Breathing pattern and thoracoabdominal motion in healthy individuals: influence of age and sex. Revista brasileira de fisioterapia (Sao Carlos (Sao Paulo, Brazil)). 2010;14:411–416.

  36. Folino A, Benzo M, Pasquero P, Laguzzi A, Mesin L, Messere A, Porta M, Roatta S. Vena Cava Responsiveness to Controlled Isovolumetric Respiratory Efforts. Journal of ultrasound in medicine : official journal of the American Institute of Ultrasound in Medicine. 2017;36:2113–23.

    Article  Google Scholar 

  37. Kimura BJ, Dalugdugan R, Gilcrease GW 3rd, Phan JN, Showalter BK, Wolfson T. The effect of breathing manner on inferior vena caval diameter. European journal of echocardiography : the journal of the Working Group on Echocardiography of the European Society of Cardiology. 2011;12:120–3.

    Article  Google Scholar 

  38. Seo Y, Iida N, Yamamoto M, Machino-Ohtsuka T, Ishizu T, Aonuma K. Estimation of Central Venous Pressure Using the Ratio of Short to Long Diameter from Cross-Sectional Images of the Inferior Vena Cava. Journal of the American Society of Echocardiography : official publication of the American Society of Echocardiography. 2017;30:461–7.

    Article  Google Scholar 

  39. Jue J, Chung W, Schiller NB. Does inferior vena cava size predict right atrial pressures in patients receiving mechanical ventilation? Journal of the American Society of Echocardiography : official publication of the American Society of Echocardiography. 1992;5:613–9.

    Article  CAS  Google Scholar 

  40. Goldhammer E, Mesnick N, Abinader EG, Sagiv M. Dilated inferior vena cava: a common echocardiographic finding in highly trained elite athletes. Journal of the American Society of Echocardiography : official publication of the American Society of Echocardiography. 1999;12:988–93.

    Article  CAS  Google Scholar 

  41. Styczynski G, Jaltuszewska M, Kosiorowska N, Kostrzewska M, Szmigielski C. Dilated inferior vena cava in young adults with vasovagal syncope. Arch Intern Med. 2009;169:1634–5.

    Article  PubMed  Google Scholar 

  42. Ciozda W, Kedan I, Kehl DW, Zimmer R, Khandwalla R, Kimchi A. The efficacy of sonographic measurement of inferior vena cava diameter as an estimate of central venous pressure. Cardiovasc Ultrasound. 2016;14:33.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kitamura H, Kobayashi C. Impairment of change in diameter of the hepatic portion of the inferior vena cava: a sonographic sign of liver fibrosis or cirrhosis. J Ultrasound Med Official journal of the American Institute of Ultrasound in Medicine. 2005;24:351–5.

    Google Scholar 

  44. Eskesen TG, Wetterslev M, Perner A. Systematic review including re-analyses of 1148 individual data sets of central venous pressure as a predictor of fluid responsiveness. Intensive Care Med. 2016;42:324–32.

    Article  CAS  PubMed  Google Scholar 

  45. Huguet R, Fard D, d’Humieres T, Brault-Meslin O, Faivre L, Nahory L, Dubois-Randé J-L, Ternacle J, Oliver L, Lim P. Three-dimensional inferior vena cava for assessing central venous pressure in patients with cardiogenic shock. J Am Soc Echocardiogr Off Publ Am Soc Echocardiogr. 2018;31:1034–43.

    Article  Google Scholar 

  46. Szymczyk T, Sauzet O, Paluszkiewicz LJ, Costard-Jäckle A, Potratz M, Rudolph V, Gummert JF, Fox H. Non-invasive assessment of central venous pressure in heart failure: a systematic prospective comparison of echocardiography and Swan-Ganz catheter. Int J Cardiovasc Imaging. 2020;36:1821–9.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Patel AR, Alsheikh-Ali AA, Mukherjee J, Evangelista A, Quraini D, Ordway LJ, Kuvin JT, Denofrio D, Pandian NG. 3D echocardiography to evaluate right atrial pressure in acutely decompensated heart failure correlation with invasive hemodynamics. JACC Cardiovasc Imaging. 2011;4:938–45.

    Article  PubMed  Google Scholar 

Download references

Funding

The authors received no financial support for the research, authorship, or publication of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregary D. Marhefka.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruge, M., Marhefka, G.D. IVC measurement for the noninvasive evaluation of central venous pressure. J Echocardiogr 20, 133–143 (2022). https://doi.org/10.1007/s12574-022-00569-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12574-022-00569-6

Keywords

Navigation