Skip to main content
Log in

Evolution of echocardiography in adult congenital heart disease: from pulsed-wave Doppler to fusion imaging

  • Review Article
  • Published:
Journal of Echocardiography Aims and scope Submit manuscript

Abstract

The number of patients with adult congenital heart disease (ACHD) has been dramatically increasing and adults with congenital heart disease now outnumber children with congenital heart disease. However, patients with ACHD are still at increased risk of morbidity and mortality due to residua and sequelae. Although echocardiography is an indispensable imaging modality in the comprehensive assessment of ACHD, accurate echocardiographic assessment of ACHD is challenging especially for physicians or sonographers who are not familiar with ACHD because of its complex morphology, physiology, and hemodynamics. A recently developed fusion imaging technology can provide synchronized display of real-time echocardiographic images and multiplanar reconstruction images of computed tomography or magnetic resonance imaging corresponding to the image plane of real-time echocardiography. We have reported the clinical utility of this fusion imaging technology for the precise evaluation of complex ACHD. On the other hand, conventional echocardiographic technology also plays an important role in assessing unique ACHD pathophysiology. For example, restrictive right ventricular physiology is a common finding after tetralogy of Fallot or pulmonary stenosis repair and can be evaluated by conventional pulsed-wave Doppler. In this review, we discuss the clinical usefulness of modern and conventional echocardiographic technologies for the evaluation of ACHD by presenting a case series.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ACHD:

Adult congenital heart disease

ccTGA:

Congenitally corrected transposition of great arteries

CHD:

Congenital heart disease

CT:

Computed tomography

EDFF:

End-diastolic forward flow

LVOT:

Left ventricular outflow tract

MRI:

Magnetic resonance imaging

PA:

Pulmonary artery

PR:

Pulmonary regurgitation

PVR:

Pulmonary valve replacement

RV:

Right ventricle / ventricular

TOF:

Tetralogy of Fallot

TTE:

Transthoracic echocardiography

VSD:

Ventricular septal defect

References

  1. Moons P, Bovijn L, Budts W, Belmans A, Gewillig M. Temporal trends in survival to adulthood among patients born with congenital heart disease from 1970 to 1992 in Belgium. Circulation. 2010;122:2264–72.

    Article  Google Scholar 

  2. Marelli AJ, Mackie AS, Ionescu-Ittu R, Rahme E, Pilote L. Congenital heart disease in the general population: changing prevalence and age distribution. Circulation. 2007;115:163–72.

    Article  Google Scholar 

  3. Marelli AJ, Ionescu-Ittu R, Mackie AS, Guo L, Dendukuri N, Kaouache M. Lifetime prevalence of congenital heart disease in the general population from 2000 to 2010. Circulation. 2014;130:749–56.

    Article  Google Scholar 

  4. Shiina Y, Toyoda T, Kawasoe Y, Tateno S, Shirai T, Wakisaka Y, Matsuo K, Mizuno Y, Terai M, Hamada H, Niwa K. Prevalence of adult patients with congenital heart disease in Japan. Int J Cardiol. 2011;146:13–6.

    Article  Google Scholar 

  5. Oe H, Watanabe N, Miyoshi T, Osawa K, Akagi T, Kanazawa S, Ito H. Potential benefit of a simultaneous, side-by-side display of contrast MDCT and echocardiography over routine sequential imaging for assessment of adult congenital heart disease: a preliminary study. J Cardiol. 2018;72:395–402.

    Article  Google Scholar 

  6. Takaya Y, Ito H. New horizon of fusion imaging using echocardiography: its progress in the diagnosis and treatment of cardiovascular disease. J Echocardiogr. 2020;18:9–15.

    Article  Google Scholar 

  7. Yokohama F, Toh N, Kotani Y, Watanabe N, Takaya Y, Akagi T, Kasahara S, Ito H. Multiple late complications after Takeuchi repair of anomalous left coronary artery from the pulmonary artery. JACC Case Rep. 2021;3(5):731–5.

    Article  Google Scholar 

  8. Gatzoulis MA, Clark AL, Cullen S, Newman CG, Redington AN. Right ventricular diastolic function 15 to 35 years after repair of tetralogy of Fallot. Restrictive physiology predicts superior exercise performance. Circulation. 1995;91:1775–81.

    Article  CAS  Google Scholar 

  9. Redington AN, Penny D, Rigby ML, Hayes A. Antegrade diastolic pulmonary arterial flow as a marker of right ventricular restriction after complete repair of pulmonary atresia with intact septum and critical pulmonary valvar stenosis. Cardiol Young. 1992;2:382–6.

    Article  Google Scholar 

  10. Apitz C, Latus H, Binder W, Uebing A, Seeger A, Bretschneider C, Sieverding L, Hofbeck M. Impact of restrictive physiology on intrinsic diastolic right ventricular function and lusitropy in children and adolescents after repair of tetralogy of Fallot. Heart. 2010;96:1837–41.

    Article  Google Scholar 

  11. Fausto A, Rizzatto G, Preziosa A, Gaburro L, Washburn MJ, Rubello D, Volterrani L. A new method to combine contrast-enhanced magnetic resonance imaging during live ultrasound of the breast using volume navigation technique: a study for evaluating feasibility, accuracy and reproducibility in healthy volunteers. Eur J Radiol. 2012;81:e332–7.

    Article  Google Scholar 

  12. Maxeiner A, Stephan C, Durmus T, Slowinski T, Cash H, Fischer T. Added value of multiparametric ultrasonography in magnetic resonance imaging and ultrasonography fusion-guided biopsy of the prostate in patients with suspicion for prostate cancer. Urology. 2015;86:108–14.

    Article  Google Scholar 

  13. Wong-On M, Til-Pérez L, Balius R. Evaluation of MRI-US fusion technology in sports-related musculoskeletal injuries. Adv Ther. 2015;32:580–94.

    Article  Google Scholar 

  14. Sugimoto K, Moriyasu F, Kobayashi Y, Saito K, Takeuchi H, Ogawa S, Ando M, Sano T, Mori T, Furuichi Y, Nakamura I. Irreversible electroporation for nonthermal tumor ablation in patients with hepatocellular carcinoma: initial clinical experience in Japan. Jpn J Radiol. 2015;33:424–32.

    Article  Google Scholar 

  15. Jung EM, Friedrich C, Hoffstetter P, Dendl LM, Klebl F, Agha A, Wiggermann P, Stroszcynski C, Schreyer AG. Volume navigation with contrast enhanced ultrasound and image fusion for percutaneous interventions: first results. PLoS ONE. 2012;7:e33956.

    Article  CAS  Google Scholar 

  16. Lee JY, Choi BI, Chung YE, Kim MW, Kim SH, Han JK. Clinical value of CT/MR-US fusion imaging for radiofrequency ablation of hepatic nodules. Eur J Radiol. 2012;81:2281–9.

    Article  Google Scholar 

  17. Sandulescu L, Saftoiu A, Dumitrescu D, Ciurea T. The role of real-time contrast-enhanced and real-time virtual sonography in the assessment of malignant liver lesions. J Gastrointestin Liver Dis. 2009;18:103–8.

    PubMed  Google Scholar 

  18. Yamamoto S, Maeda N, Tamesa M, Nagashima Y, Yoshimura K, Oka M. Prospective ultrasonographic prediction of sentinel lymph node metastasis by real-time virtual sonography constructed with three-dimensional computed tomography-lymphography in breast cancer patients. Breast Cancer. 2012;19:77–82.

    Article  Google Scholar 

  19. Van Praagh R, Van Praagh S. The anatomy of common aorticopulmonary trunk (truncus arteriosus communis) and its embryologic implications. A study of 57 necropsy cases. Am J Cardiol. 1965;16:406–25.

    Article  Google Scholar 

  20. Moran AM, Hornberger LK, Jonas RA, Keane JF. Development of a double-chambered right ventricle after repair of tetralogy of Fallot. J Am Coll Cardiol. 1998;31:1127–33.

    Article  CAS  Google Scholar 

  21. Yanagawa B, Alghamdi AA, Dragulescu A, Viola N, Al-Radi OO, Mertens LL, Coles JG, Caldarone CA, Van Arsdell GS. Primary sutureless repair for “simple” total anomalous pulmonary venous connection: midterm results in a single institution. J Thorac Cardiovasc Surg. 2011;141:1346–54.

    Article  Google Scholar 

  22. Norgård G, Gatzoulis MA, Moraes F, Lincoln C, Shore DF, Shinebourne EA, Redington AN. Relationship between type of outflow tract repair and postoperative right ventricular diastolic physiology in tetralogy of Fallot. Implications for long-term outcome. Circulation. 1996;94:3276–80.

    Article  Google Scholar 

  23. Lu JC, Cotts TB, Agarwal PP, Attili AK, Dorfman AL. Relation of right ventricular dilation, age of repair, and restrictive right ventricular physiology with patient-reported quality of life in adolescents and adults with repaired tetralogy of fallot. Am J Cardiol. 2010;106:1798–802.

    Article  Google Scholar 

  24. Ahmad N, Kantor PF, Grosse-Wortmann L, Seller N, Jaeggi ET, Friedberg MK, Mertens L. Influence of RV restrictive physiology on LV diastolic function in children after tetralogy of Fallot repair. J Am Soc Echocardiogr. 2012;25:866–73.

    Article  Google Scholar 

  25. Lam YY, Kaya MG, Goktekin O, Gatzoulis MA, Li W, Henein MY. Restrictive right ventricular physiology: its presence and symptomatic contribution in patients with pulmonary valvular stenosis. J Am Coll Cardiol. 2007;50:1491–7.

    Article  Google Scholar 

  26. Sachdev MS, Bhagyavathy A, Varghese R, Coelho R, Kumar RS. Right ventricular diastolic function after repair of tetralogy of Fallot. Pediatr Cardiol. 2006;27:250–5.

    Article  CAS  Google Scholar 

  27. Cullen S, Shore D, Redington A. Characterization of right ventricular diastolic performance after complete repair of tetralogy of Fallot. Restrictive physiology predicts slow postoperative recovery. Circulation. 1995;91:1782–9.

    Article  CAS  Google Scholar 

  28. Gatzoulis MA, Balaji S, Webber SA, Siu SC, Hokanson JS, Poile C, Rosenthal M, Nakazawa M, Moller JH, Gillette PC, Webb GD, Redington AN. Risk factors for arrhythmia and sudden cardiac death late after repair of tetralogy of Fallot: a multicentre study. Lancet. 2000;356:975–81.

    Article  CAS  Google Scholar 

  29. Valente AM, Gauvreau K, Assenza GE, Babu-Narayan SV, Schreier J, Gatzoulis MA, Groenink M, Inuzuka R, Kilner PJ, Koyak Z, Landzberg MJ, Mulder B, Powell AJ, Wald R, Geva T. Contemporary predictors of death and sustained ventricular tachycardia in patients with repaired tetralogy of Fallot enrolled in the INDICATOR cohort. Heart. 2014;100:247–53.

    Article  Google Scholar 

  30. Norgård G, Gatzoulis MA, Josen M, Cullen S, Redington AN. Does restrictive right ventricular physiology in the early postoperative period predict subsequent right ventricular restriction after repair of tetralogy of Fallot? Heart. 1998;79:481–4.

    Article  Google Scholar 

  31. Samyn MM, Kwon EN, Gorentz JS, Yan K, Danduran MJ, Cava JR, Simpson PM, Frommelt PC, Tweddell JS. Restrictive versus nonrestrictive physiology following repair of tetralogy of Fallot: is there a difference? J Am Soc Echocardiogr. 2013;26:746–55.

    Article  Google Scholar 

  32. Lee W, Yoo S-J, Roche SL, Kantor P, van Arsdell G, Park E-A, Redington A, Grosse-Wortmann L. Determinants and functional impact of restrictive physiology after repair of tetralogy of Fallot: new insights from magnetic resonance imaging. Int J Cardiol. 2013;167:1347–53.

    Article  Google Scholar 

  33. Pijuan-Domenech A, Pineda V, Castro MA, Sureda-Barbosa C, Ribera A, Cruz LM, Ferreira-Gonzalez I, Dos-Subirà L, Subirana-Domènech T, Garcia-Dorado D, Casaldàliga-Ferrer J. “Pulmonary valve replacement diminishes the presence of restrictive physiology and reduces atrial volumes”: a prospective study in Tetralogy of Fallot patients. Int J Cardiol. 2014;177:261–5.

    Article  Google Scholar 

  34. Toh N, Kotani Y, Akagi T, Kuroko Y, Baba K, Otsuki S, Kasahara S, Ito H. Outcomes of patients with pulmonary atresia with intact ventricular septum reaching adulthood. Congenit Heart Dis. 2020;15:1–11.

    Article  Google Scholar 

  35. Suruga K, Toh N, Kotani Y, Onishi H, Akagi T, Kasahara S, Ito H. Residual restrictive right ventricular physiology after one-and-a-half ventricular repair conversion in pulmonary atresia with intact ventricular septum. CASE (Phila). 2020;4:523–5.

    Google Scholar 

Download references

Acknowledgements

The authors thank Nobuhisa Watanabe, RDCS for obtaining the excellent echocardiographic data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norihisa Toh.

Ethics declarations

Conflict of interest

Norihisa Toh received lecture fees from Canon Medical Systems Corporation.

Ethical approval

All procedures were conducted in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1964 and later revisions.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toh, N., Akagi, T., Kasahara, S. et al. Evolution of echocardiography in adult congenital heart disease: from pulsed-wave Doppler to fusion imaging. J Echocardiogr 19, 205–211 (2021). https://doi.org/10.1007/s12574-021-00533-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12574-021-00533-w

Keywords

Navigation