Skip to main content
Log in

Relationship of left atrial global peak systolic strain with left ventricular diastolic dysfunction and brain natriuretic peptide level in end-stage renal disease patients with preserved left ventricular ejection fraction

  • Original Investigation
  • Published:
Journal of Echocardiography Aims and scope Submit manuscript

Abstract

Background

In end-stage renal disease patients with preserved LV ejection fraction undergoing chronic hemodialysis, we investigated the relationship of left atrial deformational parameters evaluated by two-dimensional speckle tracking imaging (2D-STI) with conventional echocardiographic diastolic dysfunction parameters and brain natriuretic peptide level.

Methods

The study group enrolled 30 patients treated with chronic hemodialysis three times weekly. Two-dimensional transthoracic echocardiography and Doppler studies were performed 44.93 (13.46) immediately before and after HD. All patients had preserved left ventricular ejection fraction.

Results

The mean age of patients was 44.93 ± 13.46 years. The mean brain natriuretic peptide (BNP) value after HD was 221.56 ± 197.79 pg/ml. BNP values were significantly higher before HD (p = 0.004), the anteroposterior diameter, area, and the volumes of the LA decreased significantly after HD. On the other hand, the left atrial ejection fraction (LAEF) and the peak LA strain during LV systole (LAGS) were found to be higher. Before HD, there were significant inverse correlations between LAGS and BNP levels (r = −0.482, p = 0.007), E/E′ (r = −0.33, p = 0.049), LAVmax (r = −0.366, p = 0.047), and LAVmin (r = –0.579, p = 0.001). LAGS had a significant correlation with E′ velocity (r = 0.557, p = 0.001) (Table 5) and LAEF (r = 0.58, p = 0.001). After HD, there were also significant correlations between LAGS and echocardiographic parameters of systolic and diastolic LV function.

Conclusions

We observed that left atrium global peak systolic strain values decreased consistently with deteriorating systolic and diastolic function. Our results suggest that LAGS measurements may be helpful as a complimentary method to evaluate diastolic function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. McIntyre CW, Odudu A, Eldehni MT, et al. Cardiac assessment in chronic kidney disease. Curr Opin Nephrol Hypertens. 2009;18(6):501–6.

    Article  PubMed  Google Scholar 

  2. Omae K, Ogawa T, Yoshikawa M, et al. Left atrial dilatation and ST-T changes predict cardiovascular outcome in chronic hemodialysis patients. Heart Vessels. 2012;27(6):610–7.

    Article  PubMed  Google Scholar 

  3. Morris DA, Gailani M, Vaz Pérez A, et al. Left atrial systolic and diastolic dysfunction in heart failure with normal left ventricular ejection fraction. J Am Soc Echocardiogr Off Publ Am Soc Echocardiogr. 2011;24(6):651–62.

    Article  Google Scholar 

  4. Saraiva RM, Demirkol S, Buakhamsri A, et al. Left atrial strain measured by two-dimensional speckle tracking represents a new tool to evaluate left atrial function. J Am Soc Echocardiogr Off Publ Am Soc Echocardiogr. 2010;23(2):172–80.

    Article  Google Scholar 

  5. Cameli M, Lisi M, Mondillo S, et al. Left atrial longitudinal strain by speckle tracking echocardiography correlates well with left ventricular filling pressures in patients with heart failure. Cardiovasc Ultrasound. 2010;8:14.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Wakami K, Ohte N, Asada K, et al. Correlation between left ventricular end-diastolic pressure and peak left atrial wall strain during left ventricular systole. J Am Soc Echocardiogr Off Publ Am Soc Echocardiogr. 2009;22(7):847–51.

    Article  Google Scholar 

  7. Nishikimi T, Yoshihara F, Morimoto A, et al. Relationship between left ventricular geometry and natriuretic peptide levels in essential hypertension. Hypertension. 1996;28(1):22–30.

    Article  CAS  PubMed  Google Scholar 

  8. Nishikimi T, Futoo Y, Tamano K, et al. Plasma brain natriuretic peptide levels in chronic hemodialysis patients: influence of coronary artery disease. Am J Kidney Dis Off J Natl Kidney Found. 2001;37(6):1201–8.

    Article  CAS  Google Scholar 

  9. Daniels LB, Maisel AS, et al. Natriuretic peptides. J Am CollCardiol. 2007;50(25):2357–68.

    Article  CAS  Google Scholar 

  10. Mosteller RD, et al. Simplified calculation of body-surface area. N Engl J Med. 1987;317(17):1098.

    CAS  PubMed  Google Scholar 

  11. Shizuku J, Yamashita T, Ohba T, et al. Left atrial volume is an independent predictor of all-cause mortality in chronic hemodialysis patients. Intern Med Tokyo Jpn. 2012;51(12):1479–85.

    Article  Google Scholar 

  12. Leung DY, Boyd A, Ng AA, Chi C, et al. Echocardiographic evaluation of left atrial size and function: current understanding, pathophysiologic correlates, and prognostic implications. Am Heart J. 2008;156(6):1056–64.

    Article  PubMed  Google Scholar 

  13. Kim SJ, Han SH, Park JT, et al. Left atrial volume is an independent predictor of mortality in CAPD patients. Nephrol Dial Transplant Off PublEur Dial TransplAssoc—EurRen Assoc. 2011;26(11):3732–9.

    Article  Google Scholar 

  14. Losi MA, Memoli B, Contaldi C, et al. Myocardial fibrosis and diastolic dysfunction in patients on chronic haemodialysis. Nephrol Dial Transplant Off PublEur Dial TransplAssoc—EurRen Assoc. 2010;25(6):1950–4.

    Article  Google Scholar 

  15. Boyd AC, Richards DAB, Marwick T, et al. Atrial strain rate is a sensitive measure of alterations in atrial phasic function in healthy ageing. Heart. 2011;97(18):1513–9.

    Article  PubMed  Google Scholar 

  16. Cho G-Y, Chan J, Leano R, et al. Comparison of two-dimensional speckle and tissue velocity based strain and validation with harmonic phase magnetic resonance imaging. Am J Cardiol. 2006;97(11):1661–6.

    Article  PubMed  Google Scholar 

  17. Vianna-Pinton R, Moreno CA, Baxter CM, et al. Two-dimensional speckle-tracking echocardiography of the left atrium: feasibility and regional contraction and relaxation differences in normal subjects. J Am Soc Echocardiogr Off Publ Am Soc Echocardiogr. 2009;22(3):299–305.

    Article  Google Scholar 

  18. Ogawa K, Hozumi T, Sugioka K, et al. Automated assessment of left atrial function from time-left atrial volume curves using a novel speckle tracking imaging method. J Am Soc Echocardiogr Off Publ Am Soc Echocardiogr. 2009;22(1):63–9.

    Article  Google Scholar 

  19. Değirmenci H, Bakırcı EM, Demirtaş L, et al. Relationship of left atrial global peak systolic strain with left ventricular diastolic dysfunction and brain natriuretic peptide level in patients presenting with non-ST elevation myocardial infarction. Med SciMonitInt Med J ExpClin Res. 2014;20:2013–9.

    Google Scholar 

  20. Lang RM, Bierig M, Devereux RB, et al. Recommendations for chamber quantification: a report from the American Society of Echocardiography’s Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J Am Soc Echocardiogr Off Publ Am Soc Echocardiogr. 2005;18(12):1440–63.

    Article  Google Scholar 

  21. Barbier P, Solomon SB, Schiller NB, et al. Left atrial relaxation and left ventricular systolic function determine left atrial reservoir function. Circulation. 1999;100(4):427–36.

    Article  CAS  PubMed  Google Scholar 

  22. Appleton CP, Kovács SJ, et al. The role of left atrial function in diastolic heart failure. Circ Cardiovasc Imaging. 2009;2(1):6–9.

    Article  PubMed  Google Scholar 

  23. Altekin RE, Yanikoglu A, Karakas MS, et al. Evaluation of left atrial function using two-dimensional speckle tracking echocardiography in end-stage renal disease patients with preserved left ventricular ejection fraction. Kardiol Pol. 2013;71(4):341–51.

    Article  PubMed  Google Scholar 

  24. Cowie MR, Struthers AD, Wood DA, et al. Value of natriuretic peptides in assessment of patients with possible new heart failure in primary care. Lancet. 1997;350(9088):1349–53.

    Article  CAS  PubMed  Google Scholar 

  25. Davis M, Espiner E, Richards G, et al. Plasma brain natriuretic peptide in assessment of acute dyspnoea. Lancet. 1994;343(8895):440–4.

    Article  CAS  PubMed  Google Scholar 

  26. De Lemos JA, McGuire DK, Drazner MH, et al. B-type natriuretic peptide in cardiovascular disease. Lancet. 2003;362(9380):316–22.

    Article  CAS  PubMed  Google Scholar 

  27. Haug C, Metzele A, Kochs M, et al. Plasma brain natriuretic peptide and atrial natriuretic peptide concentrations correlate with left ventricular end-diastolic pressure. Clin Cardiol. 1993;16(7):553–7.

    Article  CAS  PubMed  Google Scholar 

  28. Jourdain P, Funck F, Bellorini M, et al. Bedside B-type natriuretic peptide and functional capacity in chronic heart failure. Eur J Heart Fail. 2003;5(2):155–60.

    Article  CAS  PubMed  Google Scholar 

  29. Yamamoto K, Burnett JC, Jougasaki M, et al. Superiority of brain natriuretic peptide as a hormonal marker of ventricular systolic and diastolic dysfunction and ventricular hypertrophy. Hypertension. 1996;28(6):988–94.

    Article  CAS  PubMed  Google Scholar 

  30. Troughton RW, Prior DL, Pereira JJ, et al. Plasma B-type natriuretic peptide levels in systolic heart failure: importance of left ventricular diastolic function and right ventricular systolic function. J Am Coll Cardiol. 2004;43(3):416–22.

    Article  CAS  PubMed  Google Scholar 

  31. Niizuma S, Iwanaga Y, Yahata T, et al. Impact of left ventricular end-diastolic wall stress on plasma B-type natriuretic peptide in heart failure with chronic kidney disease and end-stage renal disease. Clin Chem. 2009;55(7):1347–53.

    Article  CAS  PubMed  Google Scholar 

  32. Niizuma S, Iwanaga Y, Yahata T, et al. Plasma B-type natriuretic peptide levels reflect the presence and severity of stable coronary artery disease in chronic haemodialysis patients. Nephrol Dial Transplant Off Publ Eur Dial Transpl Assoc—EurRen Assoc. 2009;24(2):597–603.

    Article  CAS  Google Scholar 

  33. Sivalingam M, Suresh M, Farrington K, et al. Comparison of B-type natriuretic peptide and NT proBNP as predictors of survival in patients on high-flux hemodialysis and hemodiafiltration. Hemodial Int Int Symp Home Hemodial. 2011;15(3):359–65.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leila Abid.

Ethics declarations

Conflict of interest

Abid L, S Charfeddine, and S Kammoun declare that they have no conflicts of interest.

Human rights statements and informed consent

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1964 and later revisions. Informed consent was obtained from all patients for being included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abid, L., Charfeddine, S. & Kammoun, S. Relationship of left atrial global peak systolic strain with left ventricular diastolic dysfunction and brain natriuretic peptide level in end-stage renal disease patients with preserved left ventricular ejection fraction. J Echocardiogr 14, 71–78 (2016). https://doi.org/10.1007/s12574-016-0276-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12574-016-0276-6

Keywords

Navigation