Skip to main content
Log in

Abstract

Crosslinking is one of the important pathways to tune properties of polymers for desired applications. Crosslinking of polymers ranges from weakly crosslinked elastomers to highly crosslinked epoxies. We present a computational study of indentation in weakly crosslinked polymer (WCP) networks. Indentation study offers a significant advantage by providing a direct relationship between a material’s local structure and its mechanical properties, while bulk mechanical testing is unable to do it. Although the complex network structure plays a crucial role in determining the mechanical characteristics of weakly cross-linked polymer (WCP) networks, indentation studies in these systems have received less attention. We explore the mechanical properties of a weakly crosslinked polymer network (WCP) using two indenters of different sizes. We establish a relationship between force-depth response, force-relaxation and local bond breaking in WCP network. This will help us to optimize the design of crosslinked polymer materials for desired applications and also guide future experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Fang, J., Fowler, P., Escrig, C., Gonzalez, R., Costa, J., Chamudis, L.: Development of biodegradable laminate films derived from naturally occurring carbohydrate polymers. Carbohyd. Polym. 60(1), 39–42 (2005)

    Google Scholar 

  2. Chen, L., Li, X., Li, L., Guo, S.: Acetylated starch-based biodegradable materials with potential biomedical applications as drug delivery systems. Curr. Appl. Phys. 7, 90–93 (2007)

    Google Scholar 

  3. James, H.M., Guth, E.: Theory of the elastic properties of rubber. J. Chem. Phys. 11(10), 455–481 (1943)

    Google Scholar 

  4. H, S.: Uber polymerisation. Eur. J. Inorg. Chem. 53(6), 1073–1085 (1920)

  5. Kröger, M.: Simple models for complex nonequilibrium fluids. Phys. Rep. 390(6), 453–551 (2004)

    MathSciNet  Google Scholar 

  6. Müller, M.: Process-directed self-assembly of copolymers: results of and challenges for simulation studies. Prog. Polym. Sci. 101, 101198 (2020)

    Google Scholar 

  7. Mukherji, D., Marques, C.M., Kremer, K.: Smart responsive polymers: fundamentals and design principles. Ann. Rev. Condens. Matter Phys. 11(1), 271–299 (2020)

    Google Scholar 

  8. Singh, M.K., Hu, M., Cang, Y., Hsu, H.-P., Therien-Aubin, H., Koynov, K., Fytas, G., Landfester, K., Kremer, K.: Glass transition of disentangled and entangled polymer melts: single-chain-nanoparticles approach. Macromolecules 53(17), 7312–7321 (2020)

    Google Scholar 

  9. Klein, J., Kumacheva, E., Mahalu, D., Perahia, D., Fetters, L.J.: Reduction of frictional forces between solid surfaces bearing polymer brushes. Nature 370(6491), 634–636 (1994)

    Google Scholar 

  10. De Beer, S., Kutnyanszky, E., Schön, P.M., Vancso, G.J., Müser, M.H.: Solvent-induced immiscibility of polymer brushes eliminates dissipation channels. Nat. Commun. 5(1), 1–6 (2014)

    Google Scholar 

  11. Singh, M.K., Ilg, P., Espinosa-Marzal, R.M., Kröger, M., Spencer, N.D.: Polymer brushes under shear: molecular dynamics simulations compared to experiments. Langmuir 31(16), 4798–4805 (2015)

    Google Scholar 

  12. Singh, M.K.: Polymer brush based tribology. In: Katiyar, J., Ramkumar, P., Rao, T., Davim, J. (eds.) Tribology in Materials and Applications. Materials Forming, Machining and Tribology, pp. 15–32. Springer, Cham (2020)

    Google Scholar 

  13. Missirlis, D., Spatz, J.P.: Combined effects of peg hydrogel elasticity and cell-adhesive coating on fibroblast adhesion and persistent migration. Biomacromology 15(1), 195–205 (2014)

    Google Scholar 

  14. Kim, S.H., Opdahl, A., Marmo, C., Somorjai, G.A.: AFM and SFG studies of phema-based hydrogel contact lens surfaces in saline solution: adhesion, friction, and the presence of non-crosslinked polymer chains at the surface. Biomaterials 23(7), 1657–1666 (2002)

    Google Scholar 

  15. Wen, J.H., Vincent, L.G., Fuhrmann, A., Choi, Y.S., Hribar, K.C., Taylor-Weiner, H., Chen, S., Engler, A.J.: Interplay of matrix stiffness and protein tethering in stem cell differentiation. Nat. Mater. 13(10), 979–987 (2014)

    Google Scholar 

  16. Beamish, J.A., Zhu, J., Kottke-Marchant, K., Marchant, R.E.: The effects of monoacrylated poly (ethylene glycol) on the properties of poly (ethylene glycol) diacrylate hydrogels used for tissue engineering. J. Biomed. Mater. Res. Part A 92(2), 441–450 (2010)

    Google Scholar 

  17. Brighenti, R., Li, Y., Vernerey, F.J.: Smart polymers for advanced applications: a mechanical perspective review. Front. Mater. 7, 196 (2020)

    Google Scholar 

  18. Stuart, M.A.C., Huck, W.T., Genzer, J., Müller, M., Ober, C., Stamm, M., Sukhorukov, G.B., Szleifer, I., Tsukruk, V.V., Urban, M., et al.: Emerging applications of stimuli-responsive polymer materials. Nat. Mater. 9(2), 101–113 (2010)

    Google Scholar 

  19. Mukherji, D., Marques, C.M., Kremer, K.: Smart responsive polymers: fundamentals and design principles. Annu. Rev. Condens. Matter Phys. 11(1), 271–299 (2020). https://doi.org/10.1146/annurev-conmatphys-031119-050618

    Article  Google Scholar 

  20. Mukherji, D., Kremer, K.: Smart polymers for soft materials: from solution processing to organic solids. Polymers 15(15), 3229 (2023)

    Google Scholar 

  21. Maier, G.: Polymers for microelectronics. Mater. Today 4(5), 22–33 (2001)

    Google Scholar 

  22. Halek, G.W.: Relationship between polymer structure and performance in food packaging applications (1988)

  23. Tripathi, A., Ko, Y., Kim, M., Lee, Y., Lee, S., Park, J., Kwon, Y.-W., Kwak, J., Woo, H.Y.: Optimization of thermoelectric properties of polymers by incorporating oligoethylene glycol side chains and sequential solution doping with preannealing treatment. Macromolecules 53(16), 7063–7072 (2020)

    Google Scholar 

  24. Shi, W., Shuai, Z., Wang, D.: Tuning thermal transport in chain-oriented conducting polymers for enhanced thermoelectric efficiency: a computational study. Adv. Funct. Mater. 27(40), 1702847 (2017)

    Google Scholar 

  25. Kim, G.-H., Lee, D., Shanker, A., Shao, L., Kwon, M.S., Gidley, D., Kim, J., Pipe, K.P.: High thermal conductivity in amorphous polymer blends by engineered interchain interactions. Nat. Mater. 14(3), 295–300 (2015)

    Google Scholar 

  26. Stevens, M.J.: Interfacial fracture between highly cross-linked polymer networks and a solid surface: effect of interfacial bond density. Macromolecules 34(8), 2710–2718 (2001)

    Google Scholar 

  27. Mukherji, D., Abrams, C.F.: Microvoid formation and strain hardening in highly cross-linked polymer networks. Phys. Rev. E 78(5), 050801 (2008)

    Google Scholar 

  28. Lv, G., Soman, B., Shan, N., Evans, C.M., Cahill, D.G.: Effect of linker length and temperature on the thermal conductivity of ethylene dynamic networks. ACS Macro Lett. 10(9), 1088–1093 (2021)

    Google Scholar 

  29. White, S.R., Sottos, N.R., Geubelle, P.H., Moore, J.S., Kessler, M.R., Sriram, S., Brown, E.N., Viswanathan, S.: Autonomic healing of polymer composites. Nature 409(6822), 794–797 (2001)

    Google Scholar 

  30. Sharifi, M., Jang, C., Abrams, C., Palmese, G.: Toughened epoxy polymers via rearrangement of network topology. J. Mater. Chem. A 2(38), 16071–16082 (2014)

    Google Scholar 

  31. Gold, B., Hövelmann, C., Lühmann, N., Pyckhout-Hintzen, W., Wischnewski, A., Richter, D.: The microscopic origin of the rheology in supramolecular entangled polymer networks. J. Rheol. 61(6), 1211–1226 (2017)

    Google Scholar 

  32. Hess, M., Roeben, E., Habicht, A., Seiffert, S., Schmidt, A.M.: Local dynamics in supramolecular polymer networks probed by magnetic particle nanorheology. Soft Matter 15(5), 842–850 (2019)

    Google Scholar 

  33. Rahil, Z., Pedron, S., Wang, X., Ha, T., Harley, B., Leckband, D.: Nanoscale mechanics guides cellular decision making. Integr. Biol. 8(9), 929–935 (2016)

    Google Scholar 

  34. Persson, B., Scaraggi, M.: Some comments on hydrogel and cartilage contact mechanics and friction. Tribol. Lett. 66(1), 23 (2018)

    Google Scholar 

  35. Mathis, C.H., Kang, C., Ramakrishna, S.N., Isa, L., Spencer, N.D., et al.: Indenting polymer brushes of varying grafting density in a viscous fluid: a gradient approach to understanding fluid confinement. Polymer 169, 115–123 (2019)

    Google Scholar 

  36. Mathis, C.H., Spencer, N.D., et al.: A two-step method for rate-dependent nano-indentation of hydrogels. Polymer 137, 276–282 (2018)

    Google Scholar 

  37. Singh, M.K., Kang, C., Ilg, P., Crockett, R., Kröger, M., Spencer, N.D.: Combined experimental and simulation studies of cross-linked polymer brushes under shear. Macromolecules 51(24), 10174–10183 (2018)

    Google Scholar 

  38. Müser, M.H., Li, H., Bennewitz, R.: Modeling the contact mechanics of hydrogels. Lubricants 7(4), 35 (2019)

    Google Scholar 

  39. Kalcioglu, Z.I., Mahmoodian, R., Hu, Y., Suo, Z., Van Vliet, K.J.: From macro-to microscale poroelastic characterization of polymeric hydrogels via indentation. Soft Matter 8(12), 3393–3398 (2012)

    Google Scholar 

  40. Mathesan, S., Rath, A., Ghosh, P.: Molecular mechanisms in deformation of cross-linked hydrogel nanocomposite. Mater. Sci. Eng. C 59, 157–167 (2016)

    Google Scholar 

  41. Ebenstein, D.M., Pruitt, L.A.: Nanoindentation of biological materials. Nano Today 1(3), 26–33 (2006)

    Google Scholar 

  42. Efremov, Y.M., Velay-Lizancos, M., Weaver, C.J., Athamneh, A.I., Zavattieri, P.D., Suter, D.M., Raman, A.: Anisotropy versus isotropy in living cell indentation with AFM. Sci. Rep. 9(1), 1–12 (2019)

    Google Scholar 

  43. Backes, S., Krause, P., Tabaka, W., Witt, M.U., Klitzing, R.: Combined cononsolvency and temperature effects on adsorbed pnipam microgels. Langmuir 33(50), 14269–14277 (2017)

    Google Scholar 

  44. Boots, J., Brake, D., Clough, J.M., Tauber, J., Ruiz-Franco, J., Kodger, T., Gucht, J.: Quantifying bond rupture during indentation fracture of soft polymer networks using molecular mechanophores. Phys. Rev. Mater. 6(2), 025605 (2022)

    Google Scholar 

  45. Harmandaris, V.A., Mavrantzas, V.G., Theodorou, D.N.: Atomistic molecular dynamics simulation of stress relaxation upon cessation of steady-state uniaxial elongational flow. Macromolecules 33(21), 8062–8076 (2000)

    Google Scholar 

  46. Kröger, M., Luap, C., Muller, R.: Polymer melts under uniaxial elongational flow: stress- optical behavior from experiments and nonequilibrium molecular dynamics computer simulations. Macromolecules 30(3), 526–539 (1997)

    Google Scholar 

  47. Murashima, T., Hagita, K., Kawakatsu, T.: Viscosity overshoot in biaxial elongational flow: coarse-grained molecular dynamics simulation of ring-linear polymer mixtures. Macromolecules 54(15), 7210–7225 (2021)

    Google Scholar 

  48. Kim, J.M., Locker, R., Rutledge, G.C.: Plastic deformation of semicrystalline polyethylene under extension, compression, and shear using molecular dynamics simulation. Macromolecules 47(7), 2515–2528 (2014)

    Google Scholar 

  49. Aoyagi, T., Doi, M.: Molecular dynamics simulation of entangled polymers in shear flow. Comput. Theor. Polym. Sci. 10(3–4), 317–321 (2000)

    Google Scholar 

  50. Parisi, D., Costanzo, S., Jeong, Y., Ahn, J., Chang, T., Vlassopoulos, D., Halverson, J.D., Kremer, K., Ge, T., Rubinstein, M., Grest, G.S., Srinin, W., Grosberg, A.Y.: Nonlinear shear rheology of entangled polymer rings. Macromolecules 54(6), 2811–2827 (2021)

    Google Scholar 

  51. Chen, J., Shi, J., Wang, Y., Sun, J., Han, J., Sun, K., Fang, L.: Nanoindentation and deformation behaviors of silicon covered with amorphous SiO2: a molecular dynamic study. RSC Adv. 8(23), 12597–12607 (2018)

    Google Scholar 

  52. Maurya, M.K., Ruscher, C., Mukherji, D., Singh, M.K.: Computational indentation in highly cross-linked polymer networks. Phys. Rev. E 106(1), 014501 (2022)

    Google Scholar 

  53. Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117(1), 1–19 (1995)

    MATH  Google Scholar 

  54. Ge, T., Pierce, F., Perahia, D., Grest, G.S., Robbins, M.O.: Molecular dynamics simulations of polymer welding: strength from interfacial entanglements. Phys. Rev. Lett. 110(9), 098301 (2013)

    Google Scholar 

  55. Kremer, K., Grest, G.S.: Dynamics of entangled linear polymer melts: a molecular-dynamics simulation. J. Chem. Phys. 92(8), 5057–5086 (1990)

    Google Scholar 

  56. Mukherji, D., Singh, M.K.: Tuning thermal transport in highly cross-linked polymers by bond-induced void engineering. Phys. Rev. Mater. 5, 025602 (2021)

    Google Scholar 

  57. Mukherji, D., Abrams, C.F.: Mechanical behavior of highly cross-linked polymer networks and its links to microscopic structure. Phys. Rev. E 79(6), 061802 (2009)

    Google Scholar 

  58. Maurya, M.K., Wu, J., Singh, M.K., Mukherji, D.: Thermal conductivity of semicrystalline polymer networks: Crystallinity or cross-linking? ACS Macro Lett. 11(7), 925–929 (2022)

    Google Scholar 

  59. Falk, M.L., Langer, J.S.: Dynamics of viscoplastic deformation in amorphous solids. Phys. Rev. E 57(6), 7192 (1998)

    Google Scholar 

  60. Oliver, W.C., Pharr, G.M.: Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. J. Mater. Res. 19(1), 3–20 (2004)

    Google Scholar 

  61. Muthukumar, M., Bobji, M., Simha, K.: Cone cracks in tissue-mimicking hydrogels during hypodermic needle insertion: the role of water content. Soft Matter 18, 3521–3530 (2022)

    Google Scholar 

  62. Hoy, R.S., Robbins, M.O.: Strain hardening in polymer glasses: limitations of network models. Phys. Rev. Lett. 99(11), 117801 (2007)

    Google Scholar 

  63. Zhao, Y., Singh, M.K., Kremer, K., Cortes-Huerto, R., Mukherji, D.: Why do elastin-like polypeptides possibly have different solvation behaviors in water-ethanol and water-urea mixtures? Macromolecules 53(6), 2101–2110 (2020)

    Google Scholar 

Download references

Acknowledgements

MKS thanks Science and Engineering Research Board (SERB), India, for the financial support provided under the Start-up Research Grant (SRG) scheme (grant number: SRG/2020/000938).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manjesh Kumar Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

1.1 A.1 Bond distribution

The network formation framework presented in Sect. 2.3 produces a reasonably uniform sample; see supplementary Fig. 9. The bond distribution is relatively homogeneous, except near the two interfaces, where the confinement walls induced depletion zone.

Fig. 9
figure 9

The distribution of bond density \(f (z^*)\) is in the z direction. The data are shown for every second (\(x_\textrm{f}=0.50\)), fourth (\(x_{\textrm{f}}=0.25\)), fifth (\(x_{\textrm{f}}=0.20\)) and every tenth (\(x_{\textrm{f}} = 0.10\))

1.2 A.2 Effect of velocity

In order to investigate the effect of indentation velocity, we performed our simulations at \(v=0.005\sigma /\tau\) and \(v=0.05\sigma /\tau\), and the response is shown in Fig. 10. It can be depicted that the \(F-d\) response of \(v=0.05\sigma /\tau\) has an insignificant difference compared to \(v=0.005\sigma /\tau\) force response, see Fig. 10. At the same time lower indentation velocities needed high computational power. Therefore we have chosen \(v=0.05\sigma /\tau\) in our study.

Fig. 10
figure 10

Force F as a function of the indentation depth d. The data are shown for a tetra-functional network with fraction monomers \(x_{\textrm{f}}\) with the indenters \(r_{\textrm{ind}}=10.0\sigma\) and \(r_{\textrm{ind}}=5.0\sigma\), and velocities \(v=0.005\sigma / \tau\) and \(v=0.05\sigma /\tau\)

1.3 A.3 Loading and unloading mechanics

In Fig. 7, loading and unloading mechanics have shown for a fraction of monomers \(x_{\textrm{f}}=0.5\) and \(x_{\textrm{f}}=0.25\). In this section, the mechanics of the fraction of monomers \(x_{\textrm{f}}=0.2\) and \(x_{\textrm{f}}=0.1\) are shown (Fig. 11).

Fig. 11
figure 11

Force F verses indentation depth d, the results are shown for the indenter \(r_{\textrm{ind}}=5.0\sigma\) and \(r_\textrm{ind}=10\sigma\) of a tetra-functional network with the fraction of a monomers \(x_{\textrm{f}}=0.2\) and \(x_{\textrm{f}}=0.1\), and the indentation is done at a velocity \(v=0.05\sigma /\tau\). These data are the remainder of Fig. 7

1.4 A.4 Effect of indenter radius

In order to see the effect of the indenter radius on the \(F-d\) response, We have chosen two indenters of different sizes ((Fig. 12). The maximum force F for the indenter radius \(r_{\textrm{ind}}=10.0\sigma\) is approximately five times higher than the maximum force F of the indenter radius \(r_{\textrm{ind}}=5.0\sigma\), during the loading condition. A large force drops \(\Delta F\) observed at indentation depth \(d\approx 29\sigma\) is because large numbers of bonds are broken and are clearly seen in Fig. 6 .

Fig. 12
figure 12

Force F as a function of the indentation depth d. Results are shown for the indenter \(r_{\textrm{ind}}=5.0\sigma\) and \(r_{\textrm{ind}}=10.0\sigma\), Data are shown for a tetra-functional network with the fraction of a monomer \(x_{\textrm{f}}=0.5\), and the indentation is performed at a constant loading velocity \(v=0.05\sigma /\tau\)

1.5 A.5 Effect of fraction of monomers

The fraction of monomers \(x_{\textrm{f}}\) is the parameter from which we can construct a range of weakly cross-linked polymers (WCP). As the \(x_{\textrm{f}}\) increases the \(F_{\textrm{max}}\) increases, which means \(x_{\textrm{f}}\) is making stiff the sample, and it can be seen in Fig. 13.

Fig. 13
figure 13

Force F as a function of the indentation depth d. Parts (a) and b show the data for the indenter \(r_\textrm{ind}=5.0\sigma\) and \(r_{\textrm{ind}}=10.0\sigma\), The data are shown for a tetrafunctional network with the fraction of monomers \(x_\textrm{f}=0.5\), \(x_{\textrm{f}}=0.25\) \(x_{\textrm{f}}=0.2\) and \(x_{\textrm{f}}=0.1\)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maurya, M.K., Singh, M.K. Computational indentation in weakly cross-linked polymer networks. Int J Adv Eng Sci Appl Math 15, 196–206 (2023). https://doi.org/10.1007/s12572-023-00354-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12572-023-00354-3

Keywords

Navigation