Skip to main content
Log in

Investigation on the Effect of Material Mismatch Between Two Dissimilar Materials Using an Adaptive Phase-field Method

  • Published:
International Journal of Advances in Engineering Sciences and Applied Mathematics Aims and scope Submit manuscript

Abstract

This paper uses an adaptive phase-field model to investigate the influence of material mismatch on fracture propagation in bi-material systems. We begin by simulating a model with mismatches in elastic stiffness and fracture toughness to explore the competition between crack deflection and penetration at the material interface. Next, we examine the interaction between elastic stiffness mismatch and fracture toughness mismatch and its impact on crack propagation behavior. We then explore the effect of interface inclination on crack propagation in a bi-material model. Finally, we study the influence of interface strength on fracture propagation. Through this numerical study, we provide valuable insights into different fracture patterns and failure mechanisms in bi-material systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Zhang, X., Jeffrey, R.G., Thiercelin, M.: Deflection and propagation of fluid-driven fractures at frictional bedding interfaces: a numerical investigation. J. Struct. Geol. 29(3), 396–410 (2007)

    Article  Google Scholar 

  2. Borst, R., Remmers, J.J.C., Needleman, A., Abellan, M.-A.: Discrete vs smeared crack models for concrete fracture: bridging the gap. Int. J. Numer. Anal. Methods. Geomech. 28(7–8), 583–607 (2004)

    Article  MATH  Google Scholar 

  3. Cervera, M., Barbat, G.B., Chiumenti, M., Wu, J.-Y.: A comparative review of XFEM, mixed FEM and phase-field models for quasi-brittle cracking. Arch. Comput. Methods Eng. 29(2), 1009–1083 (2022)

    Article  MathSciNet  Google Scholar 

  4. Settgast, R.R., Fu, P., Walsh, S.D.C., White, J.A., Annavarapu, C., Ryerson, F.J.: A fully coupled method for massively parallel simulation of hydraulically driven fractures in 3-dimensions. Int. J. Numer. Anal. Meth. Geomech. 41(5), 627–653 (2017). https://doi.org/10.1002/nag.2557

    Article  Google Scholar 

  5. Lecampion, B., Bunger, A., Zhang, X.: Numerical methods for hydraulic fracture propagation: a review of recent trends. J. Nat. Gas Sci. Eng. 49, 66–83 (2018)

    Article  Google Scholar 

  6. Moës, N., Dolbow, J., Belytschko, T.: A finite element method for crack growth without remeshing. Int. J. Numer. Methods Eng. 46(1), 131–150 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Belytschko, T., Black, T.: Elastic crack growth in finite elements with minimal remeshing. Int. J. Numer. Methods Eng. 45(5), 601–620 (1999)

    Article  MATH  Google Scholar 

  8. Duarte, C.A., Babuška, I., Oden, J.T.: Generalized finite element methods for three-dimensional structural mechanics problems. Comput. Struct. 77(2), 215–232 (2000)

    Article  MathSciNet  Google Scholar 

  9. Duarte, C.A., Hamzeh, O.N., Liszka, T.J., Tworzydlo, W.W.: A generalized finite element method for the simulation of three-dimensional dynamic crack propagation. Comput. Methods Appl. Mech. Eng. 190(15), 2227–2262 (2001)

    Article  MATH  Google Scholar 

  10. Belytschko, T., Moës, N., Usui, S., Parimi, C.: Arbitrary discontinuities in finite elements. Int. J. Numer. Methods Eng. 50(4), 993–1013 (2001)

    Article  MATH  Google Scholar 

  11. Stolarska, M., Chopp, D.L., Moës, N., Belytschko, T.: Modelling crack growth by level sets in the extended finite element method. Int. J. Numer. Methods Eng. 51(8), 943–960 (2001)

    Article  MATH  Google Scholar 

  12. Annavarapu, C., Settgast, R.R., Vitali, E., Morris, J.P.: A local crack-tracking strategy to model three-dimensional crack propagation with embedded methods. Comput. Methods Appl. Mech. Eng. 311, 815–837 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Francfort, G.A., Marigo, J.-J.: Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids 46(8), 1319–1342 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bourdin, B., Francfort, G.A., Marigo, J.-J.: Numerical experiments in revisited brittle fracture. J. Mech. Phys. Solids 48(4), 797–826 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ambati, M., Gerasimov, T., Lorenzis, L.D.: A review on phase-field models of brittle fracture and a new fast hybrid formulation. Comput. Mech. 55, 383–405 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Miehe, C., Hofacker, M., Schänzel, L.-M., Aldakheel, F.: Phase field modeling of fracture in multi-physics problems. Part ii. Coupled brittle-to-ductile failure criteria and crack propagation in thermo-elastic-plastic solids. Comput. Methods Appl. Mech. Eng. 294, 486–522 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Verhoosel, C.V., Borst, R.: A phase-field model for cohesive fracture. Int. J. Numer. Methods Eng. 96(1), 43–62 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Bourdin, B., Larsen, C., Richardson, C.: A time-discrete model for dynamic fracture based on crack regularization. Int. J. Fract. 168, 133–143 (2011)

    Article  MATH  Google Scholar 

  19. Ambati, M., De Lorenzis, L.: Phase-field modeling of brittle and ductile fracture in shells with isogeometric NURBS-based solid-shell elements. Comput. Methods Appl. Mech. Eng. 312, 351–373 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Zak, A.R., Williams, M.L.: Crack point stress singularities at a bi-material interface. J. Appl. Mech. 30(1), 142 (1963)

    Article  Google Scholar 

  21. Ming-Yuan, H., Hutchinson, J.W.: Crack deflection at an interface between dissimilar elastic materials. Int. J. Solids Struct. 25(9), 1053–1067 (1989)

    Article  Google Scholar 

  22. Hossain, M.Z., Hsueh, C.-J., Bourdin, B., Bhattacharya, K.: Effective toughness of heterogeneous media. J. Mech. Phys. Solids 71, 15–32 (2014)

    Article  MathSciNet  Google Scholar 

  23. Hsueh, C.-J., Avellar, L., Bourdin, B., Ravichandran, G., Bhattacharya, K.: Stress fluctuation, crack renucleation and toughening in layered materials. J. Mech. Phys. Solids 120, 68–78 (2018)

    Article  MathSciNet  Google Scholar 

  24. Paggi, M., Reinoso, J.: Revisiting the problem of a crack impinging on an interface: a modeling framework for the interaction between the phase field approach for brittle fracture and the interface cohesive zone model. Comput. Methods Appl. Mech. Eng. 321, 145–172 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. Dusane, A.R., Budarapu, P.R., Pradhan, A.K., Natarajan, S., Reinoso, J., Paggi, M.: Simulation of bridging mechanisms in complex laminates using a hybrid PF-CZM method. Mech. Adv. Mater. Struct. 29(28), 7743–7771 (2022)

    Article  Google Scholar 

  26. Reinoso, J., Durand, P., Budarapu, P.R., Paggi, M.: Crack patterns in heterogenous rocks using a combined phase field-cohesive interface modeling approach: a numerical study. Energies 12, 6 (2019)

    Article  Google Scholar 

  27. Carollo, V., Guillén-Hernández, T., Reinoso, J., Paggi, M.: Recent advancements on the phase field approach to brittle fracture for heterogeneous materials and structures. Adv. Model. Simul. Eng. Sci. 5(1), 8 (2018)

    Article  Google Scholar 

  28. Hansen-Dörr, A.C., de Borst, R., Hennig, P., Kästner, M.: Phase-field modelling of interface failure in brittle materials. Comput. Methods Appl. Mech. Eng. 346, 25–42 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  29. Muixí, A., Fernández-Méndez, S., Rodríguez-Ferran, A.: Adaptive refinement for phase-field models of brittle fracture based on Nitsche’s method. Comput. Mech. 66, 69–85 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  30. Miehe, C., Welschinger, F., Hofacker, M.: Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field FE implementations. Int. J. Numer. Methods Eng. 83(10), 1273–1311 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Wu, J.-Y., Nguyen, V.P., Thanh Nguyen, C., Sutula, D., Bordas, S., Sinaie, S.: Phase field modelling of fracture. Adv. Appl. Mech. 53, 1–183 (2019)

    Google Scholar 

  32. Miehe, C., Hofacker, M., Welschinger, F.: A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Comput. Methods Appl. Mech. Eng. 199(45), 2765–2778 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. Kuhn, C., Müller, R.: Phase field modeling of interface effects on cracks in heterogeneous materials. Proc. Appl. Math. Mech. 19(1), 201900378 (2019)

    Article  Google Scholar 

  34. Muixí, A.: Locally adaptive phase field models and transition to fracture. Ph.d. thesis, Universitat Politècnica de Catalunya (2020)

  35. Annavarapu, C.: An efficient finite element method for interface problems. Ph.d. thesis, Duke University (2013)

  36. Annavarapu, C., Hautefeuille, M., Dolbow, J.E.: Stable imposition of stiff constraints in explicit dynamics for embedded finite element methods. Int. J. Numer. Methods Eng. 92(2), 206–228 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  37. Annavarapu, C., Hautefeuille, M., Dolbow, J.E.: A robust Nitsche’s formulation for interface problems. Comput. Methods Appl. Mech. Eng. 225–228, 44–54 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  38. Jiang, W., Liu, Y., Annavarapu, C.: A weighted Nitsche’s method for interface problems with higher-order simplex elements. Comput. Mech. 69(5), 1115–1129 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  39. Geelen, R.J.M., Liu, Y., Dolbow, J.E., Rodríguez-Ferran, A.: An optimization-based phase-field method for continuous-discontinuous crack propagation. Int. J. Numer. Methods Eng. 116(1), 1–20 (2018)

    Article  MathSciNet  Google Scholar 

  40. Molnár, G., Gravouil, A.: 2D and 3D Abaqus implementation of a robust staggered phase-field solution for modeling brittle fracture. Finite Elem. Anal. Des. 130, 27–38 (2017)

    Article  Google Scholar 

  41. Geuzaine, C., Remacle, J.-F.: Gmsh: a 3-D finite element mesh generator with built-in pre- and post-processing facilities. Int. J. Numer. Methods Eng. 79(11), 1309–1331 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Chandrasekhar Annavarapu gratefully acknowledges the support from the Science and Engineering Research Board under the Start-up Research Grant SP21221642CESERB008957. The support from the Ministry of Education, Government of India, and IIT Madras to the Subsurface Mechanics and Geo-Energy Laboratory under the grant SB20210856CEMHRD008957 is also gratefully acknowledged. Antonio Rodríguez-Ferran gratefully acknowledges the appointment as Visiting Faculty Fellow of IIT Madras (grant SB20210856CEMHRD008957) and the financial support of the Spanish Ministry of Science and Innovation (grant PID2020-116141GB-I00).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandrasekhar Annavarapu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, S., Annavarapu, C. & Rodríguez-Ferran, A. Investigation on the Effect of Material Mismatch Between Two Dissimilar Materials Using an Adaptive Phase-field Method. Int J Adv Eng Sci Appl Math 15, 173–186 (2023). https://doi.org/10.1007/s12572-023-00347-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12572-023-00347-2

Keywords

Navigation