Skip to main content
Log in

Abstract

Metallic phononic crystals (PhCs) with characteristic length in micrometers can have bandgaps in the MHz regime and are suitable as bulk and surface acoustic wave devices. Fabrication of such PhCs either in batches or large scale using advanced machining techniques based on lasers, electron beams, or ion beams is too slow and expensive. In this work, we demonstrated two methods of fabricating metallic PhCs from stainless steel SS304 and identified their bandgaps. Two PhCs were fabricated using electrochemical anodic dissolution using wire-electrochemical micromachining (wire-ECMM) and three PhCs by melting and vaporization of the substrate using wire-electric discharge machining (wire-EDMM). Using these methods, a square array of micropillars of square cross-section were machined over surfaces of SS304 substrate with a cross-sectional area of 1 cm\(^2\). Each PhC was considered to have the micropillars as the scatterers and air, water, or epoxy as the host. Dispersion relations and transmittance were evaluated using the finite element method. Both types of simulation results revealed the presence of partial and complete bandgaps for the different PhCs in the frequency range of 0.1\(-\)3.5 MHz. As texturing the surface alters the lyophilic or lyophobic nature of the surface, this work paves the way to explore the development of multifunctional metamaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Vasileiadis, T., Varghese, J., Babacic, V., Gomis-Bresco, J., Navarro Urrios, D., Graczykowski, B.: Progress and perspectives on phononic crystals. J. Appl. Phys. 129(16), 160901 (2021). https://doi.org/10.1063/5.0042337

    Article  Google Scholar 

  2. Kushwaha, M.S.: Classical band structure of periodic elastic composites. Int. J. Modern Phys. B 10(09), 977–1094 (1996). https://doi.org/10.1142/S0217979296000398

    Article  Google Scholar 

  3. Zhan, Z.Q., Wei, P.J.: Band gaps of three-dimensional phononic crystal with anisotropic spheres. Mech. Adv. Mater. Struct. 21(4), 245–254 (2014). https://doi.org/10.1080/15376494.2011.627630

    Article  Google Scholar 

  4. Pennec, Y., Vasseur, J.O., Djafari-Rouhani, B., Dobrzyński, L., Deymier, P.A.: Two-dimensional phononic crystals: examples and applications. Surf. Sci. Rep. 65(8), 229–291 (2010). https://doi.org/10.1016/j.surfrep.2010.08.002

    Article  Google Scholar 

  5. Miniaci, M., Pal, R.K.: Design of topological elastic waveguides. J. Appl. Phys. 130(14), 141101 (2021). https://doi.org/10.1063/5.0057288

    Article  Google Scholar 

  6. Ke, M., Zubtsov, M., Lucklum, R.: Sub-wavelength phononic crystal liquid sensor. J. Appl. Phys. 110(2), 026101 (2011). https://doi.org/10.1063/1.3610391

    Article  Google Scholar 

  7. Chen, J.-S., Chen, T.-Y., Chang, Y.-C.: Metastructures with double-spiral resonators for low-frequency flexural wave attenuation. J. Appl. Phys. 130(1), 014901 (2021). https://doi.org/10.1063/5.0053579

    Article  Google Scholar 

  8. He, Z., Heng, Y., Peng, S., Ding, Y., Ke, M., Liu, Z.: Acoustic collimating beams by negative refraction in two-dimensional phononic crystal. J. Appl. Phys. 105(11), 116105 (2009). https://doi.org/10.1063/1.3142242

    Article  Google Scholar 

  9. Inoue, T., Murakami, S.: Topological band structure of surface acoustic waves on a periodically corrugated surface. Phys. Rev. B 99, 195443 (2019). https://doi.org/10.1103/PhysRevB.99.195443

    Article  Google Scholar 

  10. Huang, K.-X., Shui, G.-S., Wang, Y.-Z., Wang, Y.-S.: Meta-arrest of a fast propagating crack in elastic wave metamaterials with local resonators. Mech. Mater. 148, 103497 (2020). https://doi.org/10.1016/j.mechmat.2020.103497

    Article  Google Scholar 

  11. Sharma, V., Chandraprakash, C.: Quasi-superhydrophobic microscale two-dimensional phononic crystals of stainless steel 304. J. Appl. Phys. 131(18), 184901 (2022). https://doi.org/10.1063/5.0079375

    Article  Google Scholar 

  12. Walia, S., Shah, C.M., Gutruf, P., Nili, H., Chowdhury, D.R., Withayachumnankul, W., Bhaskaran, M., Sriram, S.: Flexible metasurfaces and metamaterials: a review of materials and fabrication processes at micro- and nano-scales. J. Appl. Phys. 2(1), 011303 (2015). https://doi.org/10.1063/1.4913751

    Article  Google Scholar 

  13. Olsson, R.H.I., El-Kady, I.: Microfabricated phononic crystal devices and applications. Meas. Sci. Technol. 20(1), 012002 (2008). https://doi.org/10.1088/0957-0233/20/1/012002

    Article  Google Scholar 

  14. Choi, C., Bansal, S., Münzenrieder, N., Subramanian, S.: Fabricating and assembling acoustic metamaterials and phononic crystals. Adv. Eng. Mater. 23(2), 2000988 (2021). https://doi.org/10.1002/adem.202000988

    Article  Google Scholar 

  15. Singh, R.: Process capability study of polyjet printing for plastic components. J. Mech. Sci Technol. 25, 1011–1015 (2011). https://doi.org/10.1007/s12206-011-0203-8

    Article  Google Scholar 

  16. Cameron, N.R.: High internal phase emulsion templating as a route to well-defined porous polymers. Polymer 46(5), 1439–1449 (2005). https://doi.org/10.1016/j.polymer.2004.11.097

    Article  Google Scholar 

  17. Roy, R.: Ceramics by the solution-sol-gel route. Science 238(4834), 1664–1669 (1987). https://doi.org/10.1126/science.238.4834.1664

    Article  Google Scholar 

  18. Donnelly, V.M., Kornblit, A.: Plasma etching: Yesterday, today, and tomorrow. J. Vac. Sci. Technol. A Vac Surf Films 31(5), 050825 (2013). https://doi.org/10.1116/1.4819316

    Article  Google Scholar 

  19. Ramkumar, J., Sharma, V., Singh, M., Singh, A.: Unconventional Machining Processes Fundamental Principles and Recent Developments. CBS Publishers & Distributors, New Delhi (2023)

    Google Scholar 

  20. Lucklum, F., Vellekoop, M.J.: Design and fabrication challenges for millimeter-scale three-dimensional phononic crystals. Crystals 7(11), 348 (2017). https://doi.org/10.3390/cryst7110348

    Article  Google Scholar 

  21. Sharma, V., Patel, D.S., Agrawal, V., Jain, V., Ramkumar, J.: Investigations into machining accuracy and quality in wire electrochemical micromachining under sinusoidal and triangular voltage pulse condition. J. Manuf. Process. 62, 348–367 (2021). https://doi.org/10.1016/j.jmapro.2020.12.010

    Article  Google Scholar 

  22. Slătineanu, L., Dodun, O., Coteaţă, M., Nagîţ, G., Băncescu, I.B., Hriţuc, A.: Wire electrical discharge machining-a review. Machines 8(4), 69 (2020). https://doi.org/10.3390/machines8040069

    Article  Google Scholar 

  23. Yan, M.-T., Huang, P.-H.: Accuracy improvement of wire-edm by real-time wire tension control. Int. J. Mach. Tools Manuf. 44(7–8), 807–814 (2004). https://doi.org/10.1016/j.ijmachtools.2004.01.019

    Article  Google Scholar 

  24. Maeda, R., Chikamori, K., Yamamoto, H.: Feed rate of wire electrochemical machining using pulsed current. Precis. Eng. 6(4), 193–199 (1984). https://doi.org/10.1016/0141-6359(84)90004-7

    Article  Google Scholar 

  25. Prakash, V., Priyadarshni, N., Das, A.K., Chattopadhyay, S.: Fabrication of hydrophobic surface on ti6al4v by wedm process for surgical instruments and bioimplants. Int. J. Adv. Manuf. Technol. (2022). https://doi.org/10.1007/s00170-021-07857-y

    Article  Google Scholar 

  26. Sharma, V., Patel, D.S., Gyanprakash, M., Ramkumar, J.: On altering the wetting behaviour and corrosion resistance of a large metallic surface area by wire electrochemical texturing. Surf. Coat. Technol. 422, 127533 (2021). https://doi.org/10.1016/j.surfcoat.2021.127533

    Article  Google Scholar 

  27. Sharma, V., Patel, D.S., Jain, V., Ramkumar, J.: Wire electrochemical micromachining: an overview. Int. J. Mach. Tools Manuf. 155, 103579 (2020). https://doi.org/10.1016/j.ijmachtools.2020.103579

    Article  Google Scholar 

  28. Ho, K., Newman, S., Rahimifard, S., Allen, R.: State of the art in wire electrical discharge machining (WEDM). Int. J. Mach. Tools Manuf. 44(12–13), 1247–1259 (2004). https://doi.org/10.1016/j.ijmachtools.2004.04.017

    Article  Google Scholar 

  29. Auld, B.A.: Acoustic Fields and Waves in Solids, vol. 1. Wiley, New York (1973)

    Google Scholar 

  30. Schmerr, L.W.: Fundamentals of Ultrasonic Nondestructive Evaluation. Springer, Berlin (2016). https://doi.org/10.1007/978-3-319-30463-2

    Book  Google Scholar 

  31. Chindam, C., Lakhtakia, A., Awadelkarim, O.O.: Parylene-c microfibrous thin films as phononic crystals. J. Micromech. Microeng. 27(7), 075012 (2017). https://doi.org/10.1088/1361-6439/aa717f

    Article  Google Scholar 

  32. Zarei, S., Shahabadi, M., Mohajerzadeh, S.: Symmetry reduction for maximization of higher-order stop-bands in two-dimensional photonic crystals. J. Modern Opt. 55(18), 2971–2980 (2008). https://doi.org/10.1080/09500340802272316

    Article  MATH  Google Scholar 

  33. Dobson, D.C., Cox, S.J.: Maximizing band gaps in two-dimensional photonic crystals. SIAM J. Appl. Math. 59(6), 2108–2120 (1999). https://doi.org/10.1137/S0036139998338455

    Article  MathSciNet  MATH  Google Scholar 

  34. COMSOL-Multiphysics: Acoustics module. Accessed on 31 Oct 2022. https://www.comsol.co.in/acoustics-module

  35. Hou, Z., Fu, X., Liu, Y.: Singularity of the bloch theorem in the fluid/solid phononic crystal. Phys. Rev. B 73, 024304 (2006). https://doi.org/10.1103/PhysRevB.73.024304

    Article  Google Scholar 

  36. Liu, Q.-H., Tao, J.: The perfectly matched layer for acoustic waves in absorptive media. J. Acoust. Soc. Am. 102(4), 2072–2082 (1997). https://doi.org/10.1121/1.419657

    Article  Google Scholar 

  37. Properties of SS304. Accessed on 15 May 2021. http://matweb.com/search/DataSheet.aspx?MatGUID=abc4415b0f-8b490387e3c922237098da &ckck=1

  38. Kushwaha, M.S.: Classical band structure of periodic elastic composites. Int. J. Modern Phys. B 10(09), 977–1094 (1996). https://doi.org/10.1142/S0217979296000398

    Article  Google Scholar 

  39. Hsiao, F.-L., Khelif, A., Moubchir, H., Choujaa, A., Chen, C.-C., Laude, V.: Complete band gaps and deaf bands of triangular and honeycomb water-steel phononic crystals. J. Appl. Phys. 101(4), 044903 (2007). https://doi.org/10.1063/1.2472650

    Article  Google Scholar 

  40. Chandraprakash, C.: Multifunctional parylene-c microfibrous thin films. Ph.D. thesis, Pennsylvania State University Feb (2017). https://doi.org/10.13140/RG.2.2.10004.71049

Download references

Acknowledgements

CC is thankful for funds from SERB Early Career Research Award ECRA/2018/002341 and the Initiation Grant from IIT Kanpur IITK/ME/2017445.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Chandraprakash.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, V., Chandraprakash, C. Fabrication and bandgaps of microscale metallic phononic crystals. Int J Adv Eng Sci Appl Math 15, 159–166 (2023). https://doi.org/10.1007/s12572-023-00340-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12572-023-00340-9

Keywords

Navigation