Skip to main content

Surface Acoustic Waves in Phononic Crystals

  • Chapter
Phononic Crystals

Abstract

Investigations of the surface acoustic wave (SAW) properties of phononic crystals in which the periodic modulation occurs on the traction-free surface did not take place until the late 1990s. Theoretical investigations initially focused on isotropic materials before being extended to the case of general anisotropy or to piezoelectric phononic crystals (PC) a few years later. Initially, experimental studies of SAW in 2D PCs were conducted on periodic structures at the millimeter scale exhibiting band gaps frequency in the range of a couple of MHz or lower. Surface modes as well as localization phenomena in linear and point defects were also demonstrated. In contrast, studies in the micrometer scale which may find applications in radio frequency (RF) communications or in MEMS devices have not started before the middle of the last decade. We propose in this chapter to report on some results obtained on the investigation of 2D SAW phononic band gap structures. The theoretical formulations of the plane-wave expansion (PWE) and of the finite difference time domain (FDTD) methods for SAWs are briefly summarized, and calculated results of SAW propagation and related phenomena such as band gaps and waveguiding are presented. Experiments conducted in PC at the micron scale allowing to demonstrate phononic band gaps and potential applications to SAW resonator devices are eventually reported.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.S. Kushwaha, P. Halevi, L. Dobrzynski, B. Djafari-Rouhani, Acoustic band structure of periodic elastic composites. Phys. Rev. Lett. 71, 2022 (1993)

    Article  Google Scholar 

  2. M.M. Sigalas, E.N. Economou, Elastic and acoustic wave band structure. J. Sound Vib. 158, 377 (1992)

    Article  Google Scholar 

  3. Z. Liu, C.T. Chan, P. Sheng, Three-component elastic wave band-gap material. Phys. Rev. B 65, 165116 (2002)

    Article  Google Scholar 

  4. M.S. Kushwaha, P. Halevi, Band-gap engineering in periodic elastic composites. Appl. Phys. Lett. 64, 1085–1087 (1994)

    Article  Google Scholar 

  5. M.S. Kushwaha, P. Halevi, G. Martinez, L. Dobrzynski, B. Djafari-Rouhani, Theory of acoustic band structure of periodic elastic composites. Phys. Rev. B 49, 2313–2322 (1994)

    Article  Google Scholar 

  6. J.O. Vasseur, B. Djafari-Rouhani, L. Dobrzynski, M.S. Kushwaha, P. Halevi, Complete acoustic band gaps in periodic fiber reinforced composite materials: the carbon/epoxy composite and some metallic systems. J. Phys. Condens. Matter 6, 8759–8770 (1994)

    Google Scholar 

  7. M. Wilm, A. Khelif, S. Ballandras, V. Laude, Out-of-plane propagation of elastic waves in two-dimensional phononic band-gap materials. Phys. Rev. E 67, 065602 (2003)

    Article  Google Scholar 

  8. C. Goffaux, J.P. Vigneron, Theoretical study of a tunable phononic band gap system. Phys. Rev. B 64, 075118 (2001)

    Article  Google Scholar 

  9. F. Wu, Z. Liu, Y. Liu, Acoustic band gaps in 2D liquid phononic crystals of rectangular structure. J. Phys. D Appl. Phys. 35, 162–165 (2002)

    Article  Google Scholar 

  10. F. Wu, Z. Liu, Y. Liu, Acoustic band gaps created by rotating square rods in a two-dimensional lattice. Phys. Rev. E 66, 046628 (2002)

    Article  Google Scholar 

  11. X. Li, F. Wu, H. Hu, S. Zhong, Y. Liu, Large acoustic band gaps created by rotating square rods in two-dimensional periodic composites. J. Phys. D Appl. Phys. 36, L15–L17 (2003)

    Article  Google Scholar 

  12. M.M. Sigalas, E.N. Economou, Attenuation of multiple-scattered sound. Europhys. Lett. 36, 241–246 (1996)

    Article  Google Scholar 

  13. M.S. Kushwaha, P. Halevi, Stop-bands for periodic metallic rods: Sculptures that can filter the noise. Appl. Phys. Lett. 70, 3218–3220 (1997)

    Google Scholar 

  14. Y.-Z. Wang, F.-M. Li, K. Kishimoto, Y.-S. Wang, W.-H. Huang, Elastic wave band gaps in magnetoelectroelastic phononic crystals. Wave Motion 46, 47–56 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. M. Kafesaki, E.N. Economou, Multiple-scattering theory for three-dimensional periodic acoustic composites. Phys. Rev. B 60, 11993 (1999)

    Article  Google Scholar 

  16. I.E. Psarobas, N. Stefanou, Scattering of elastic waves by periodic arrays of spherical bodies. Phys. Rev. B 62, 278 (2000)

    Article  Google Scholar 

  17. Z. Liu, C.T. Chan, P. Sheng, Elastic wave scattering by periodic structures of spherical objects: Theory and experiment. Phys. Rev. B 62, 2446 (2000)

    Article  Google Scholar 

  18. J. Mei, Z. Liu, J. Shi, D. Tian, Theory for elastic wave scattering by a two-dimensional periodical array of cylinders: An ideal approach for band-structure calculations. Phys. Rev. B 67, 245107 (2003)

    Article  Google Scholar 

  19. D. Garcia-Pablos, M. Sigalas, F.R. Montero de Espinosa, M. Torres, M. Kafesaki, N. Garcia, Theory and experiments on elastic band gaps. Phys. Rev. Lett. 84, 4349 (2000)

    Article  Google Scholar 

  20. Y. Tanaka, Y. Tomoyasu, S. Tamura, Band structure of acoustic waves in phononic lattices: Two-dimensional composites with large acoustic mismatch. Phys. Rev. B 62, 7387–7392 (2000)

    Article  Google Scholar 

  21. A. Khelif, B. Djafari-Rouhani, V. Laude, M. Solal, Coupling characteristics of localized phonons in photonic crystal fibers. J. Appl. Phys. 94, 7944–7946 (2003)

    Article  Google Scholar 

  22. J.O. Vasseur, P.A. Deymier, G. Frantziskonis, G. Hong, B. Djafari-Rouhani, L. Dobrzynski, Experimental evidence for the existence of absolute acoustic band gaps in two-dimensional periodic composite media. J. Phys. Condens. Matter 10, 6051–6064 (1998)

    Google Scholar 

  23. J.O. Vasseur, P.A. Deymier, B. Chenni, B. Djafari-Rouhani, L. Dobrzynski, D. Prevost, Experimental and theoretical evidence of absolute acoustic band gaps in two-dimensional solid phononic crystals. Phys. Rev. Lett. 86, 3012–3015 (2001)

    Article  Google Scholar 

  24. F.R. Montero de Espinosa, E. Jimenez, M. Torres, Ultrasonic band gap in a periodic two-dimensional composite. Phys. Rev. Lett. 80, 1208–1211 (1998)

    Article  Google Scholar 

  25. M. Torres, F.R. Montero de Espinosa, J.L. AragĂ³n, Ultrasonic wedges for elastic wave bending and splitting without requiring a full band gap. Phys. Rev. Lett. 86, 4282–4285 (2001)

    Article  Google Scholar 

  26. P.S. Russell, E. Marin, A. Díez, Sonic band gaps in PCF preforms: enhancing the interaction of sound and light. Opt Express 11, 2555–2560 (2003)

    Article  Google Scholar 

  27. K.M. Ho, C.K. Cheng, Z. Yang, X.X. Zhang, P. Sheng, Broadband locally resonant sonic shields. Appl. Phys. Lett. 83, 5566–5569 (2003)

    Article  Google Scholar 

  28. M. Sigalas, M.S. Kushwaha, E.N. Economou, M. Kafesaki, I.E. Psarobas, W. Steurer, Classical vibrational modes in phononic lattices: theory and experiment. Z. Kristallogr. 220, 765–809 (2005)

    Article  Google Scholar 

  29. Y. Tanaka, S. Tamura, Surface acoustic waves in two-dimensional periodic elastic structures. Phys. Rev. B 58, 7958 (1998)

    Article  Google Scholar 

  30. Y. Tanaka, S. Tamura, Acoustic stop bands of surface and bulk modes in two-dimensional phononic lattices consisting of aluminum and a polymer. Phys. Rev. B 60, 13294 (1999)

    Article  Google Scholar 

  31. T.-T. Wu, Z.-G. Huang, S. Lin, Surface and bulk acoustic waves in two-dimensional phononic crystals consisting of materials with general anisotropy. Phys. Rev. B 69, 094301 (2004)

    Article  Google Scholar 

  32. T.-T. Wu, Z.-C. Hsu, Z.-G. Huang, Band gaps and the electromechanical coupling coefficient of a surface acoustic wave in a two-dimensional piezoelectric phononic crystals. Phys. Rev. B 71, 064303 (2005)

    Article  Google Scholar 

  33. V. Laude, M. Wilm, S. Benchabane, A. Khelif, Full band gap for surface acoustic waves in a piezoelectric phononic crystal. Phys. Rev. E 71, 036607 (2005)

    Article  Google Scholar 

  34. J.-C. Hsu, T.-T. Wu, Bleustein–Gulyaev–Shimizu surface acoustic waves in two-dimensional piezoelectric phononic crystals. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53,1169–1176 (2006)

    Article  Google Scholar 

  35. Y.-Z. Wang, F.-M. Li, W.-H. Huang, Y.-S. Wang, The propagation and localization of Rayleigh waves in disordered piezoelectric phononic crystals. J. Mech. Phys. Solids 56, 1578–1590 (2008)

    Article  MATH  Google Scholar 

  36. M. Torres, F.R. Montero de Espinosa, D. Garcia-Pablos, N. Garcia, Sonic band gaps in finite elastic media surface states and localization phenomena in linear and point defects. Phys. Rev. Lett. 82, 3504 (1999)

    Article  Google Scholar 

  37. F. Meseguer, M. Holgado, D. Caballero, N. Benaches, J. Sanchez-Dehesa, C. LĂ³pez, J. Llinares, Rayleigh-wave attenuation by a semi-infinite two-dimensional elastic-band-gap crystal. Phys. Rev. B 59, 12169–12172 (1999)

    Article  Google Scholar 

  38. R.E. Vines, J.P. Wolfe, J.V. Every, Scanning phononic lattices with ultrasound. Phys. Rev. B 60, 11871 (1999)

    Article  Google Scholar 

  39. X. Zhang, T. Jackson, E. Lafond, Evidence of surface acoustic wave band gaps in the phononic crystals created on thin plates. Appl. Phys. Lett. 88, 041911 (2006)

    Article  Google Scholar 

  40. B. Bonello, C. Charles, F. Ganot, Velocity of a SAW propagating in a 2D phononic crystal. Ultrasonics 44, 1259–1263 (2006)

    Article  Google Scholar 

  41. T.-T. Wu, L.-C. Wu, Z.-G. Huang, Frequency band-gap measurement of two-dimensional air/silicon phononic crystals using layered slanted finger interdigital transducers. J. Appl. Phys. 97, 094916 (2005)

    Article  Google Scholar 

  42. S. Benchabane, A. Khelif, J.-Y. Rauch, L. Robert, V. Laude, Evidence for complete surface wave band gap in a piezoelectric phononic crystal. Phys. Rev. E 73, 065601 (2006)

    Article  Google Scholar 

  43. K. Kokkonen, M. Kaivola, S. Benchabane, A. Khelif, V. Laude, Scattering of surface acoustic waves by a phononic crystal revealed by heterodyne interferometry. Appl. Phys. Lett. 91, 083517 (2007)

    Article  Google Scholar 

  44. D.M. Profunser, E. Muramoto, O. Matsuda, O.B. Wright, U. Lang, Dynamic visualization of surface acoustic waves on a two-dimensional phononic crystal. Phys. Rev. B 80, 014301 (2009)

    Article  Google Scholar 

  45. T.-T. Wu, W.-S. Wang, J.-H. Sun, J.-C. Hsu, Y.-Y. Chen, Utilization of phononic-crystal reflective gratings in a layered surface acoustic wave device. Appl. Phys. Lett. 94, 101913 (2009)

    Article  Google Scholar 

  46. B. Manzanares-MartĂ­nez, F. Ramos-Mendieta, Surface elastic waves in solid composites of two-dimensional periodicity. Phys. Rev. B 68, 134303 (2003)

    Article  Google Scholar 

  47. J.O. Vasseur, P.A. Deymier, B. Djafari-Rouhani, Y. Pennec, A.-C. Hladky-Hennion, Absolute forbidden bands and waveguiding in two-dimensional phononic crystal plates. Phys. Rev. B 77, 085415 (2008)

    Article  Google Scholar 

  48. M.M. Sigalas, N. Garcia, Theoretical study of three dimensional elastic band gaps with the finite-difference time-domain method. J. Appl. Phys. 87(6), 3122–3125 (2000)

    Article  Google Scholar 

  49. M. Kafesaki, M.M. Sigalas, N. Garcia, Frequency modulation in the transmittivity of wave guides in elastic-wave band-gap materials. Phys. Rev. Lett. 85(19), 4044–4047 (2000)

    Article  Google Scholar 

  50. P.-F. Hsieh, T.-T. Wu, J.-H. Sun, Three-dimensional phononic band gap calculations using the FDTD method and a PC cluster system. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53(1), 148–158 (2006)

    Google Scholar 

  51. J.-H. Sun, T.-T. Wu, Propagation of surface acoustic waves through sharply bent two-dimensional phononic crystal waveguides using a finite-difference time-domain method. Phys. Rev. B 74, 174305 (2006)

    Article  Google Scholar 

  52. J. Berenger, A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 144, 185–200 (1994)

    Article  MathSciNet  Google Scholar 

  53. W.C. Chew, Q.H. Liu, Perfectly matched layers for elastodynamics: a new absorbing boundary condition. J. Comput. Acoustics 4(4), 341–359 (1996)

    Article  Google Scholar 

  54. F. Chagla, C. Cabani, P.M. Smith, Perfectly matched layer for FDTD computations in piezoelectric crystals. Proc. IEEE Ultrason. Symp., pp. 517–520 (2004)

    Google Scholar 

  55. S. Benchabane, O. Gaiffe, R. Salut, G. Ulliac, Y. Achaoui, V. Laude, Observation of surface-guided waves in holey hypersonic phononic crystal. Appl. Phys. Lett. 98, 171908 (2011)

    Article  Google Scholar 

  56. T.-T. Wu, Z.-G. Huang, S.Y. Liu, Surface acoustic wave band gaps in micro-machined air/silicon phononic structures – theoretical calculation and experiment. Zeitschrift fĂ¼r Kristallographie 220, 841 (2005)

    Article  Google Scholar 

  57. T.-T. Wu, Y.-Y. Chen, Exact analysis of dispersive SAW devices on ZnO/diamond/Si-layered structures. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49, 142 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah Benchabane .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wu, TT., Hsu, JC., Sun, JH., Benchabane, S. (2016). Surface Acoustic Waves in Phononic Crystals. In: Khelif, A., Adibi, A. (eds) Phononic Crystals. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9393-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9393-8_6

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-9392-1

  • Online ISBN: 978-1-4614-9393-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics