Skip to main content
Log in

Abstract

Model predictive control (MPC) represents an optimal strategy where constraints on inputs, outputs and system states can be implemented as part of the control law that takes the form of a mathematical program. MPC of linear systems with a quadratic objective function results in a quadratic program (QP) that needs to be solved online at each sampling instant. Multiparametric programming methods that attempt an explicit solution to QPs have been successfully used in context of MPC and is termed as explicit MPC (eMPC). eMPC for linear systems results in a piecewise affine-in-state feedback control law and is determined offline. During online implementation, the control law is selected from among the different pieces based on the real-time value of the states. An ability to verify the controller output over all possible state realizations of the feasible state-space is important in any critical application including health and aerospace and is a unique feature of eMPC. Since state feedback MPC requires full state information, it is always used in conjunction with a state estimator such as a Kalman Filter. Further, fault tolerant control methodologies depend on state and parameter estimation to detect and diagnose faults followed by compensation. Conventionally, the state filtering step is performed prior to MPC and thus the interaction between the estimator and controller remains hidden and can be analyzed only via numerical simulations. In this work, we propose using multiparametric programming to find the explicit solution of the joint estimator-MPC problem. In particular, the eMPC control law now depends linearly on the joint information of states and measurements. This allows explicitly obtaining the sensitivity of the MPC control law to the measurement as well as the estimator parameters. The proposed explicit solution of the joint estimator-MPC problem is demonstrated on a SISO 2-tank system. The effect of the estimator gain on the size of the feasible region is delineated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mehra, R.: On the identification of variances and adaptive Kalman filtering. IEEE Transact. on Automatic Cont. 15(2), 175–184 (1970)

    Article  MathSciNet  Google Scholar 

  2. Odelson, B.J., Rajamani, M.R., Rawlings, J.B.: A new autocovariance least-squares method for estimating noise covariances. Automatica 42(2), 303–308 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Huang, R., Patwardhan, S.C., Biegler, L.T.: One way separation principle for a class of nonlinear observers and the robust stability analysis. IFAC Proceedings Volumes 45(17), 157–162 (2012). 4th IFAC Conference on Nonlinear Model Predictive Control

  4. Thosar, D., Mukherjee, T., Gilbile, P., Bhushan, M.: Conventional and Explicit Approaches for Simultaneous Moving Horizon Estimation and Model Predictive Control: A Comparative Evaluation. IFAC-PapersOnLine 53(1), 356–361 (2020). 6th Conference on Advances in Control and Optimization of Dynamical Systems ACODS 2020

  5. Yan, J., Bitmead, R.R.: Incorporating state estimation into model predictive control and its application to network traffic control. Automatica 41(4), 595–604 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cannon, M., Cheng, Q., Kouvaritakis, B., Raković, S.V.: Stochastic tube MPC with state estimation. Automatica 48(3), 536–541 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bemporad, A., Morari, M., Dua, V., Pistikopoulos, E.N.: The explicit linear quadratic regulator for constrained systems. Automatica 38(1), 3–20 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Söderström, T.: Discrete-time Stochastic Systems: Estimation and Control. Springer, London (2002)

    Book  MATH  Google Scholar 

  9. Gelb, A.: Applied Optimal Estimation. MIT Press, Cambridge, MA (1974)

    Google Scholar 

  10. Gupta, A., Bhartiya, S., Nataraj, P.S.V.: A novel approach to multiparametric quadratic programming. Automatica 47(9), 2112–2117 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Nocedal, J., Wright, S.: Numerical Optimization. Springer, New York, NY (2006)

    MATH  Google Scholar 

  12. Moshkenani, P.A.: Explicit Model Predictive Control for Higher Order Systems. Ph.D thesis, Department of Engineering Cybernetics, NTNU (2019)

  13. Rauová, I., Kvasnica, M., C̆irka, L., Fikar, M.: Real-Time Model Predictive Control of a Laboratory Liquid Tanks System. In: 17th International Conference on Process Control ’09, S̆trbské Pleso, Slovakia, pp. 304–308 (2009)

  14. Herceg, M., Kvasnica, M., Jones, C.N., Morari, M.: Multi-Parametric Toolbox 3.0. In: Proc. of the European Control Conference, Zürich, Switzerland, pp. 502–510 (2013). http://control.ee.ethz.ch/~mpt

Download references

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharad Bhartiya.

Ethics declarations

Competing interests

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Prediction Equations: While Eq.(7) propagates in future, all future measurements within prediction horizon N are considered to be constant and equal to \(y_{k}\). The prediction equations for the estimator dynamics are as follows.

$$\begin{aligned} \chi ={\tilde{A}}{\hat{x}}_{k\vert k-1}+{\tilde{B}}U+{\tilde{\Gamma }}y_{k} \end{aligned}$$
(1)

where \({\tilde{B}}=\begin{bmatrix} {\mathbf {0}}_{n\times m} &{} \cdots &{} \cdots &{} {\mathbf {0}}_{n\times m}\\ B &{} \ddots &{}&{} \vdots \\ AB &{} B &{} \ddots &{} \vdots \\ \vdots &{} &{} \ddots &{} {\mathbf {0}}_{n\times m}\\ A^{N-1}B &{} \cdots &{} AB &{} B \end{bmatrix}\), \({\hat{A}}=\begin{bmatrix} I_{n\times n}\\ A\\ A^{2}\\ A^{3}\\ \vdots \\ A^{N} \end{bmatrix}\), \({\tilde{A}}={\hat{A}}(I-K_{\infty }C)\) and \({\tilde{\Gamma }}={\hat{A}}K_{\infty }\)

The prediction equations in Eq.(1) are linear in \(K_{\infty }\).

Constraint Equations: The constraint matrices for Eq.(11) are as follows.

\(G=\begin{bmatrix} {\tilde{B}}\\ -{\tilde{B}}\\ I_{mN\times mN}\\ -I_{mN\times mN}\\ \end{bmatrix}\), \(S^{x}=S(I-K_{\infty }C)\),

\(S^{y}=SK_{\infty }\), \(S=\begin{bmatrix} -{\hat{A}}\\ {\hat{A}}\\ {\mathbf {0}}_{mN\times n}\\ {\mathbf {0}}_{mN\times n}\\ \end{bmatrix}\) and \(W=\begin{bmatrix} \overline{X}\\ -{\underline{X}}\\ \overline{U}\\ -{\underline{U}}\\ \end{bmatrix}\)

Objective Function: The matrices corresponding to \({\hat{J}}(U,{\hat{x}}_{k\vert k-1},y_{k})\) are as follows.

\(H=2({\tilde{B}}^{T}{\tilde{Q}}{\tilde{B}}+{\tilde{R}})\), \(F_{x}=2(I-K_{\infty }C)^{T}{\hat{A}}^{T}{\tilde{Q}}{\tilde{B}}\) and \(F_{y}=2K^{T}_{\infty }{\hat{A}}^{T}{\tilde{Q}}{\tilde{B}}\)

where \({\tilde{Q}}=diag(Q,Q,\cdots ,Q,P_{f})\) and \({\tilde{R}}=diag(R,R,\cdots ,R,R)\).

Constraint Matrices for Standard MpQP: The constraint matrices for the RHS of Eq.(14) are given below

\(E^{x}={\tilde{E}}(I-K_{\infty }C)\), \(E^{y}={\tilde{E}}K_{\infty }\) and

\({\tilde{E}}=(S+2GH^{-1}{\tilde{B}}^{T}{\tilde{Q}}{\hat{A}})\)

Details related to Theorem 1: The matrices corresponding to Eq.(23) are as follows.

\({\mathcal {F}}_{{\mathcal {A}}_{j},z_{x}}=\tilde{{\mathcal {F}}}_{z,j}(I-K_{\infty }C)\), \({\mathcal {F}}_{{\mathcal {A}}_{j},z_{y}}=\tilde{{\mathcal {F}}}_{z,j}K_{\infty }\) and \(g_{{\mathcal {A}}_{j},z}=H^{-1}G^{T}_{{\mathcal {A}}_{j}} (G_{{\mathcal {A}}_{j}}H^{-1}G^{T}_{{\mathcal {A}}_{j}})^{-1}W_{{\mathcal {A}}_{j}}\).

where \(\tilde{{\mathcal {F}}}_{x,j}=H^{-1}G^{T}_{{\mathcal {A}}_{j}} (G_{{\mathcal {A}}_{j}}H^{-1}G^{T}_{{\mathcal {A}}_{j}})^{-1}{\tilde{E}}_{{\mathcal {A}}_{j}}\).

The matrices corresponding to Eq.(24) are as follows.

\({\mathcal {F}}_{{\mathcal {A}}_{j},\lambda _{x}}=\tilde{{\mathcal {F}}}_{\lambda ,j}(I-K_{\infty }C)\), \({\mathcal {F}}_{{\mathcal {A}}_{j},\lambda _{y}}=\tilde{{\mathcal {F}}}_{\lambda ,j}K_{\infty }\) and \(g_{{\mathcal {A}}_{j},\lambda }=-(G_{{\mathcal {A}}_{j}}H^{-1}G^{T}_{{\mathcal {A}}_{j}})^{-1}W_{{\mathcal {A}}_{j}}\)

where \(\tilde{{\mathcal {F}}}_{\lambda ,j}=(G_{{\mathcal {A}}_{j}}H^{-1}G^{T}_{{\mathcal {A}}_{j}})^{-1}{\tilde{E}}_{{\mathcal {A}}_{j}}\).

The matrices corresponding to Eq.(28) are as follows.

\({\tilde{H}}_{{\mathcal {A}}_{j},x}={\tilde{H}}_{j}(I-K_{\infty }C)\), \({\tilde{H}}_{{\mathcal {A}}_{j},y}={\tilde{H}}_{j}K_{\infty }\) and \({\tilde{L}}_{j}=\begin{bmatrix} g_{{\mathcal {A}}_{j},\lambda }\\ W_{{\mathcal {I}}_{j}}-G_{{\mathcal {I}}_{j}}g_{{\mathcal {A}}_{j},z}\\ \end{bmatrix}\)

where \({\tilde{H}}_{j}=\begin{bmatrix} -(G_{{\mathcal {A}}_{j}}H^{-1}G^{T}_{{\mathcal {A}}_{j}})^{-1}{\tilde{E}}_{{\mathcal {A}}_{j}}\\ G_{{\mathcal {I}}_{j}}H^{-1}G^{T}_{{\mathcal {A}}_{j}} (G_{{\mathcal {A}}_{j}}H^{-1}G^{T}_{{\mathcal {A}}_{j}})^{-1}{\tilde{E}}_{{\mathcal {A}}_{j}}-{\tilde{E}}_{{\mathcal {I}}_{j}}\\ \end{bmatrix}\)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mate, S., Bhartiya, S. & Nataraj, P.S.V. An Explicit Solution of Joint Estimation-Linear Model Predictive Control. Int J Adv Eng Sci Appl Math 14, 15–23 (2022). https://doi.org/10.1007/s12572-022-00318-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12572-022-00318-z

Keywords

Navigation