Skip to main content
Log in

On the development of direct displacement control method: application to local and nonlocal damage mechanics

  • Published:
International Journal of Advances in Engineering Sciences and Applied Mathematics Aims and scope Submit manuscript

Abstract

The present work deals with development of method called direct displacement control (DDCM) that explicitly imposes the incremental displacement without recourse to pseudo force vector while solving nonlinear problems from solid mechanics. The limitation of the approaches, generalized displacement control method and displacement control method are overcome in DDCM approach while achieving faster inter-element force balance in finite element framework (FEF). The important application of DDCM is proposed to be elasto-plastic damage (EPD), as the damage-induced softening makes internal force balance difficult. The 1D local, and 1D and 2D nonlocal EPD formulations are developed; the derivation of 1D algorithmic tangent modulus is proposed. The applicability and correctness of DDCM approach are successfully demonstrated solving several 1D and 2D local and nonlocal EPD problems within FEF (in-house code and ABAQUS®).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Crisfield, M.: Non-Linear Finite Element Analysis of Solids and Structures: Advanced Topics. Wiley, Hoboken (1997)

    MATH  Google Scholar 

  2. Wang, S., Fu, S., Zhang, C., Chen, W.: Thermo-mechanical coupled modelling on fixed joint interface in machine tools. Int. J. Mater. Struct. Integrity 8(1–3), 121 (2014)

    Article  Google Scholar 

  3. Clarke, M.J., Hancock, G.J.: A study of incremental-iterative strategies for non-linear analyses. Int. J. Numer. Methods Eng. 29(7), 1365 (1990)

    Article  Google Scholar 

  4. Huang, J., Griffiths, D.: Return mapping algorithms and stress predictors for failure analysis in geomechanics. J. Eng. Mech. 135(4), 276 (2009)

    Article  Google Scholar 

  5. Voyiadjis, G., Taqieddin, Z.: Elastic plastic and damage model for concrete materials: part i—theoretical formulation. Int. J. Struct. Changes Solids Mech. Appl. 1(1), 31 (2009)

    Google Scholar 

  6. Yang, Y., Leu, L., Yang, J.: Key considerations in tracing the postbuckling response of structures with multi winding loops. Mech. Adv. Mater. Struct. 14(3), 175 (2007)

    Article  Google Scholar 

  7. Yaw, L.: 2D co-rotational truss formulation, https://gab.wallawalla.edu pp. 1–15 (2009)

  8. Mulay, S., Udhayaraman, R., Anas, M.: Comparative study of algorithms to handle geometric and material nonlinearities, 3rd Indian conference on applied mechanics pp. 1–19 (2017)

  9. Milan, J., Djimédo, K., Cino, V.: Damage and fracture in geomaterials. Europ. J. Civil Eng. 11, 7–8 (2007)

    Google Scholar 

  10. Andrade, F., Andrade Pires, F., César de Sá, J., Malcher, L.: Improvement of the numerical prediction of ductile failure with an integral nonlocal damage model. Int. J. Mater. Form. 2(1), 439 (2009)

    Article  Google Scholar 

  11. Andrade, F., César de Sá, J., Andrade Pires, F., Malcher, L.: Nonlocal formulations for lemaitre’s ductile damage model. In: X International Conference on Computational Plasticity pp. 1–4 (2009)

  12. Nguyen, N., Bui, H., Nguyen, G., Kodikara, J.: A cohesive damage-plasticity model for DEM and its application for numerical investigation of soft rock fracture properties. Int. J. Plast. 98, 175 (2017)

    Article  Google Scholar 

  13. Haddag, B., Abed-Meraim, F., Balan, T.: Strain localization analysis using a large deformation anisotropic elastic-plastic model coupled with damage. Int. J. Plast. 25(10), 1970 (2009)

    Article  Google Scholar 

  14. Haddag, B., Abed-Meraim, F., Tudor, B.: Finite element prediction of sheet forming defects using elastic-plastic. Damage Local. Models AIP Conf. Proceed. 908(1), 227 (2007)

    Article  Google Scholar 

  15. Lemaitre, J.: A continuous damage mechanics model for ductile fracture. J. Eng. Mater. Technol. 107(1), 83 (1985)

    Article  MathSciNet  Google Scholar 

  16. Shojaei, A., Li, L., Tan, P., Fish, J.: Dynamic delamination in laminated fiber reinforced composites: a continuum damage mechanics approach. Int. J. Solids Struct. 71, 262 (2015)

    Article  Google Scholar 

  17. Xu, Q., Chen, J., Li, J., Xu, G.: Coupled elasto-plasticity damage constitutive models for concrete. J. Zhejiang Univ. Sci. A 14(4), 256 (2013)

    Article  Google Scholar 

  18. Zhou, F., Cheng, G.: A coupled plastic damage model for concrete considering the effect of damage on plastic flow. Math. Probl. Eng. 2015, 1 (2014)

    Google Scholar 

  19. Sciarra, F.: A nonlocal model with strain-based damage. Int. J. Solids Struct. 46(22), 4107 (2009)

    Article  Google Scholar 

  20. Sciarra, F.: Nonlocal plasticity and damage, The 2013 world congress on advances in structural engineering and mechanics (ASEM13) pp. 1 – 10 (2013)

  21. Voyiadjis, G., Taqieddin, Z., Kattan, P.: Theoretical formulation of a coupled elastic-plastic anisotropic damage model for concrete using the strain energy equivalence concept. Int. J. Damage Mech. 18(7), 603 (2009)

    Article  Google Scholar 

  22. Jason, L., Huerta, A., Pijaudier-Cabot, G., Ghavamian, S.: An elastic plastic damage formulation for concrete: application to elementary tests and comparison with an isotropic damage model. Comput. Methods Appl. Mech. Eng. 195(52), 7077 (2006)

    Article  Google Scholar 

  23. Fang, L., Qiang, F., Cen, C., Naigang, L.: An elasto-plastic damage constitutive theory based on pair functional potentials and slip mechanism. Chin. J. Aeronaut. 23(6), 686 (2010)

    Article  Google Scholar 

  24. Zhao, L., Zhu, Q., Shao, J.: A micro-mechanics based plastic damage model for quasi-brittle materials under a large range of compressive stress. Int. J. Plast. 100, 156 (2018)

    Article  Google Scholar 

  25. Mulay, S., Udhayaraman, R.: On the constitutive modelling and damage behaviour of plain woven textile composite. Int. J. Solids Struct. 156–157, 73 (2019)

    Article  Google Scholar 

  26. Pirondi, A., Bonora, N., Steglich, D., Brocks, W., Hellmann, D.: Simulation of failure under cyclic plastic loading by damage models. Int. J. Plast. 22(11), 2146 (2006)

    Article  Google Scholar 

  27. Skamniotis, C., Elliott, M., Charalambides, M.: On modelling the constitutive and damage behaviour of highly non-linear bio-composites—Mesh sensitivity of the viscoplastic-damage law computations. Int. J. Plast. 114, 40–62 (2018)

    Article  Google Scholar 

  28. Brünig, M., Gerke, S., Hagenbrock, V.: A Continuum damage and failure model based on stress-state-dependent criteria. In: Proceedings of the ASME 2012 11th Biennial Conference on Engineering Systems Design and Analysis (2012)

  29. Vignjevic, R., Djordjevic, N., Panov, V.: Modelling of dynamic behaviour of orthotropic metals including damage and failure. Int. J. Plast. 38, 47 (2012)

    Article  Google Scholar 

  30. Batoz, J., Dhatt, G.: Incremental displacement algorithms for nonlinear problems. Int. J. Numer. Methods Eng. 14(8), 1262 (1979)

    Article  MathSciNet  Google Scholar 

  31. Burnett, D.: Finite Element Analysis: From Concepts to Applications. Addison Wesley, New York (1987)

    MATH  Google Scholar 

  32. Kachanov, M.: On the concept of damage in creep and in the brittle-elastic range. Int. J. Damage Mech. 3(4), 329 (1994)

    Article  Google Scholar 

  33. Kachanov, L.: Introduction to Continuum Damage Mechanics. Springer, Berlin (2013)

    MATH  Google Scholar 

  34. Murakami, S.: Continuum Damage Mechanics. Springer, Berlin (2012)

    Book  Google Scholar 

  35. Lemaitre, J.: A Course on Damage Mechanics. Springer, Berlin (1996)

    Book  Google Scholar 

  36. Yaw, L.: Nonlinear Static - 1D Plasticity - Various Forms of Isotropic Hardening, Walla Walla University pp. 1–25 (2012)

  37. Yaw, L.: Nonlinear Static - 1D Plasticity - Isotropic and Kinematic Hardening, Walla Walla University pp. 1–22 (2017)

  38. Simo, J., Hughes, T.: Computational Inelasticity. Springer, Berlin (1998)

    MATH  Google Scholar 

  39. César de Sá, J., Andrade, F., Andrade Pires, F.: Theoretical and numerical issues on ductile failure prediction—an overview. Comput. Methods Mater. Sci. 10(4), 279 (2010)

    Google Scholar 

  40. Bažant, Z., Jirásek, M.: Nonlocal integral formulations of plasticity and damage: survey of progress. J. Eng. Mech. ASCE 128(11), 1119 (2002)

    Article  Google Scholar 

  41. Nguyen, V., Lani, F., Pardoen, T., Morelle, X., Noels, L.: A large strain hyperelastic viscoelastic-viscoplastic-damage constitutive model based on a multi-mechanism non-local damage continuum for amorphous glassy polymers. Int. J. Solids Struct. 96, 192 (2016)

    Article  Google Scholar 

  42. de Souza Neto, E., Peric, D., Owen, D.: Computational Methods for Plasticity: Theory and Applications. Wiley, Hoboken (2008)

    Book  Google Scholar 

Download references

Acknowledgements

The author gratefully acknowledges the financial support provided by VSSC, ISRO, India, under Project number ICSR/ISRO-IITM/ASE/14-15/SHAT. The author also gratefully acknowledges several technical discussions with Prof. Shyam Keralavarma of the Aerospace engg. dept. of IIT Madras, which helped in the validation of several derived equations in the present work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shantanu Shashikant Mulay.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mulay, S.S., Subramanian, H. On the development of direct displacement control method: application to local and nonlocal damage mechanics. Int J Adv Eng Sci Appl Math 12, 101–124 (2020). https://doi.org/10.1007/s12572-020-00274-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12572-020-00274-6

Keywords

Navigation