Skip to main content
Log in

Abstract

In this paper, we have applied semi-Lagrangian schemes with meshfree interpolation, based on a moving least squares method, to solve the BGK model for rarefied gas dynamics. Sod’s shock tube problems are presented for a large range of mean free paths in one-dimensional physical space and three-dimensional velocity space. In order to validate the solutions obtained from the meshfree method, we have used the piecewise linear spline interpolation. Furthermore, we have compared the solutions of the BGK model with the solutions obtained from direct simulation Monte Carlo method. In the case of a very small mean free path, the numerical solutions are compared with the exact solutions of the compressible Euler equations. Overall, we found that the meshfree interpolation gives better approximation than the piecewise linear spline interpolation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Cercignani, C., Illner, R., Pulvirenti, M.: The Mathematical Theory of Dilute Gases. Springer, Berlin (1994)

    Book  Google Scholar 

  2. Bird, G.A.: Molecular Gas Dynamics and Direct Simulation of Gas Flows. Oxford University Press, New York (1994)

    Google Scholar 

  3. Babovsky, H.: A convergence proof for Nanbu’s Boltzmann simulation scheme. Eur. J. Mech. 8, 41 (1989)

    MathSciNet  MATH  Google Scholar 

  4. Neunzert, H., Struckmeier, J.: Particle methods for the Boltzmann equation. Acta Numer. 4, 417 (1995)

    Article  MathSciNet  Google Scholar 

  5. Gad-el Hak, M.: The fluid mechanics of microdevices—the Freeman scholar lecture. ASME J. Fluids Eng. 121(403), 5–33 (1999)

    Article  Google Scholar 

  6. Kerniadakis, G.E., Beskok, A., Aluru, N.R.: Microflows and Nanoflows, Fundamentals and Simulation. Springer, New York (2006)

    Google Scholar 

  7. Bhatnagar, P.L., Gross, E.P., Krook, M.: A model for collision processes in gases. Phys. Rev. 94, 511 (1954)

    Article  Google Scholar 

  8. Mieussens, L.: Discrete velocity model and implicit scheme for the BGK equation of rarefied gas dynamics. Math. Models Methods Appl. Sci. 10, 1121–1149 (2000)

    Article  MathSciNet  Google Scholar 

  9. Russo, G., Filbet, F.: Semi-lagrangian schemes applied to moving boundary problems for the BGK model of rarefied gas dynamics, Kinetic and Related Models. Am. Inst. Math. Sci. 2(1), 231–250 (2009)

    MATH  Google Scholar 

  10. Tiwari, S., Kuhnert, J.: Modelling of two-phase flow with surface tension by Finite Point-set method (FPM). J. Comp. Appl. Math. 203, 376–386 (2007)

    Article  Google Scholar 

  11. Tiwari, S., Klar, A., Hardt, S.: A particle−particle hybrid method for kinetic and continuum equations. J. Comp. Phys. 228, 7109–7124 (2009)

    Article  MathSciNet  Google Scholar 

  12. Deshpande, S.M., Ramesh, V., Malagi, K., Arora, K.: Least squares kinetic upwind mesh-free method. Def. Sci. J. 60(6), 583–597 (2010)

    Article  Google Scholar 

  13. Sod, G.A.: A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws. J. Comp. Phys. 27, 1–31 (1978)

    Article  MathSciNet  Google Scholar 

  14. Chapman, S., Cowling, T.W.: The Mathematical Theory of Non-Uniform Gases. Cambridge University Press, Cambridge (1970)

    MATH  Google Scholar 

  15. Carrillo, J.A., Vecil, F.: Non oscillatory interpolation methods applied to Vlasov-based models. SIAM J. Sci. Comput. 27, 1071–1091 (2005)

    Article  MathSciNet  Google Scholar 

  16. Groppi, M., Russo, G., Stracquadanio, G.: High order semi-Lagrangian methods for the BGK equation. Commun. Math. Sci. 14(2), 389–414 (2016)

    Article  MathSciNet  Google Scholar 

  17. Holway, L.H.: Kinetic theory of shock structure using an ellipsoidal distribution function, In: Rarefied Gas Dynamics, Proceedings of the Fourth International Symposium, vol. 1, pp. 193–215. University of Toronto, Academic Press, New York (1964)

  18. Dennis, J.E., Schnabel, R.B.: Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Prentice-Hall, Upper Saddle River (1983)

    MATH  Google Scholar 

  19. Boscarino, S., Chen, S.-Y., Russo, G., Yun, S.-B.: High order conservative Semi-Lagrangian scheme for the BGK model of the Boltzmann equation, arXiv:1905.03660 (2019)

Download references

Acknowledgements

This work is supported by the DFG (German research foundation) under Grant No. KL 1105/30-1 and by the ITN-ETN Marie-Curie Horizon 2020 program ModCompShock, Modeling and computation of shocks and interfaces, Project ID: 642768.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudarshan Tiwari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tiwari, S., Klar, A. & Russo, G. A meshfree method for the BGK model for rarefied gas dynamics. Int J Adv Eng Sci Appl Math 11, 187–197 (2019). https://doi.org/10.1007/s12572-019-00254-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12572-019-00254-5

Keywords

Navigation