Skip to main content
Log in

Abstract

This paper investigates the feasibility of imaging the movement of water into partially saturated concrete using electrical resistance tomography (ERT). With this technique, the spatial distribution of electrical resistance within the concrete sample was acquired from 4-point electrical measurements obtained on its surface. As the ingress of water influences the electrical properties of the concrete, it is shown that ERT can assist in monitoring and visualising water movement within concrete. To this end, the difference-imaging technique was used to obtain a qualitative representation of moisture distribution within concrete during the initial 20-h absorption. It is shown that the technique also enables the influence of surface damage to be studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. McCarter, W.J., Ezirim, H., Emerson, M.: Properties of concrete in the cover zone: water penetration, sorptivity and ionic ingress. Mag. Concr. Res. 48(176), 149–156 (1996)

    Article  Google Scholar 

  2. McCarter, W.J., Chrisp, T.M., Butler, A., Basheer, P.A.M.: Near–surface sensors for condition monitoring of cover-zone concrete. Constr. Build. Mater. 15(2–3), 115–124 (2001)

    Article  Google Scholar 

  3. Thomas, M.D., Bamforth, P.B.: Modelling chloride diffusion in concrete: effect of fly ash and slag. Cem. Concr. Res. 29(4), 487–495 (1999)

    Article  Google Scholar 

  4. Ishida, T., Iqbal, P.O., Anh, H.T.: Modeling of chloride diffusivity coupled with non-linear binding capacity in sound and cracked concrete. Cem. Concr. Res. 39(10), 913–923 (2009)

    Article  Google Scholar 

  5. Kim, J., McCarter, W.J., Suryanto, B., Nanukuttan, S.V., Basheer, P.A.M., Chrisp, T.M.: Chloride ingress into marine exposed concrete: a comparison of empirical-and physically-based models. Cem. Concr. Compos. 72, 133–145 (2016)

    Article  Google Scholar 

  6. Weiss, W.J., Yang, W., Shah, S.P.: Shrinkage cracking of restrained concrete slabs. ASCE J. Eng. Mech. 124(7), 765–774 (1998)

    Article  Google Scholar 

  7. Mihashi, H., de Leite, J.P.: State-of-the-art report on control of cracking in early age concrete. J. Adv. Concr. Technol. 2(2), 141–154 (2004)

    Article  Google Scholar 

  8. Beaudoin, J.J., MacInnis, C.: The mechanism of frost damage in hardened cement paste. Cem. Concr. Res. 4(2), 139–147 (1974)

    Article  Google Scholar 

  9. Bleszynski, R., Hooton, R.D., Thomas, M.D., Rogers, C.A.: Durability of ternary blend concrete with silica fume and blast-furnace slag: laboratory and outdoor exposure site studies. ACI Mater. J. 99(5), 499–508 (2002)

    Google Scholar 

  10. Takahashi, Y., Ogawa, S., Tanaka, Y., Maekawa, K.: Scale-dependent ASR expansion of concrete and its prediction coupled with silica gel generation and migration. J. Adv. Concr. Technol. 14(8), 444–463 (2016)

    Article  Google Scholar 

  11. Fujiyama, C., Tang, X.J., Maekawa, K., An, X.H.: Pseudo-cracking approach to fatigue life assessment of RC bridge decks in service. J. Adv. Concr. Technol. 11(1), 7–21 (2013)

    Article  Google Scholar 

  12. Suryanto, B., Nagai, K., Maekawa, K.: Bidirectional multiple cracking tests on high-performance fiber-reinforced cementitious composite plates. ACI Mater. J. 107(5), 450–460 (2010)

    Google Scholar 

  13. Beushausen, H., Alexander, M.G., Andrade, C., Basheer, M., Baroghel-Bouny, V., Corbett, D., d’Andréa, R., Gonçalves, A., Gulikers, J., Jacobs, F., Monteiro, A.V., Nanukuttan, S.V., Otieno, M., Polder, R., Torrent, R.: Application examples of performance-based specification and quality control. In: Beushausen, H., Luco, L.F. (eds.) Performance-based Specifications and Control of Concrete Durability: State-of-the-Art Report RILEM TC 230-PSC, pp. 197–266. Springer, Dordrecht (2016)

    Chapter  Google Scholar 

  14. Karhunen, K., Seppänen, A., Lehikoinen, A., Monteiro, P.J.M., Kaipio, J.P.: Electrical resistance tomography imaging of concrete. Cem. Concr. Res. 40, 137–145 (2010)

    Article  Google Scholar 

  15. Zhang, T., Zhou, L., Ammari, H., Seo, J.K.: Electrical impedance spectroscopy-based defect sensing technique in estimating cracks. Sensors 15(5), 10909–10922 (2015)

    Article  Google Scholar 

  16. Hallaji, M., Seppänen, A., Pour-Ghaz, M.: Electrical resistance tomography to monitor unsaturated moisture flow in cementitious materials. Cem. Concr. Res. 69, 10–18 (2015)

    Article  Google Scholar 

  17. Smyl, D., Rashetnia, R., Seppänen, A., Pour-Ghaz, M.: Can electrical resistance tomography be used for imaging unsaturated moisture flow in cement-based materials with discrete cracks? Cem. Concr. Res. 91, 61–72 (2017)

    Article  Google Scholar 

  18. Hou, T.C., Lynch, J.P.: Electrical impedance tomographic methods for sensing strain fields and crack damage in cementitious structures. J. Intell. Mater. Syst. Struct. 20(11), 1363–1379 (2009)

    Article  Google Scholar 

  19. Hallaji, M., Pour-Ghaz, M.: A new sensing skin for qualitative damage detection in concrete elements: rapid difference imaging with electrical resistance tomography. NDT&E Int. 68, 13–21 (2014)

    Article  Google Scholar 

  20. Hallaji, M., Seppänen, A., Pour-Ghaz, M.: Electrical impedance tomography-based sensing skin for quantitative imaging of damage in concrete. Smart Mater. Struct. 23, 085001 (2014)

    Article  Google Scholar 

  21. Asgharzadeh, A., Reichling, K., Raupach, M.: Electrical impedance tomography on concrete, vol. 19. The International Symposium on Non-Destructive Testing in Civil Engineering (NDT-CE), Berlin, Germany (2015)

  22. McCarter, W.J., Emerson, M., Ezirim, H.: Properties of concrete in the cover zone: developments in monitoring techniques. Mag. Concr. Res. 47(172), 243–251 (1995)

    Article  Google Scholar 

  23. McCarter, W.J., Chrisp, T.M., Starrs, G., Adamson, A., Owens, E., Basheer, P.A.M., Nanukuttan, S.V., Srinivasan, S., Holmes, N.: Developments in performance monitoring of concrete exposed to extreme environments. ASCE J. Infrastruct. Syst. 18, 167–175 (2012)

    Article  Google Scholar 

  24. McCarter, W.J., Chrisp, T.M., Starrs, G., Adamson, A., Basheer, P.A.M., Nanukuttan, S.V., Srinivasan, S., Green, C.: Characterization of physio-chemical processes and hydration kinetics in concretes containing supplementary cementitious materials using electrical property measurements. Cem. Concr. Res. 50, 26–33 (2013)

    Article  Google Scholar 

  25. Polydorides, N., Lionheart, W.R.: A Matlab toolkit for three-dimensional electrical impedance tomography: a contribution to the Electrical Impedance and Diffuse Optical Reconstruction Software project. Meas. Sci. Technol. 13(12), 1871–1883 (2002)

    Article  Google Scholar 

  26. Cheng, K.S., Isaacson, D., Newell, J.C., Gisser, D.G.: Electrode models for electric current computed tomography. IEEE Trans. Biomed. Eng. 36(9), 918–924 (1989)

    Article  Google Scholar 

  27. Adler, A., Guardo, R.: Electrical impedance tomography: regularized imaging and contrast detection. IEEE Trans. Med. Imaging 15(2), 170–179 (1996)

    Article  Google Scholar 

  28. Brown, B.H., Seagar, A.D.: The Sheffield data collection system. Clin. Phys. Physiol. Meas. 8(A), 91–97 (1987)

    Article  Google Scholar 

  29. BS EN 197-1:2011: Cement: Composition, Specifications and Conformity Criteria for Common Cements. British Standards Institution, London (2000)

  30. EIDORS: Electrical Impedance Tomography and Diffuse Optical Tomography Reconstruction Software. http://eidors3d.sourceforge.net/. Accessed 10 July 2016

  31. Adler, A., Lionheart, W.R.B.: Uses and abuses of EIDORS: an extensible software base for EIT. Physiol. Meas. 27(5), S25–S42 (2006)

    Article  Google Scholar 

  32. Adler, A., Arnold, J.H., Bayford, R., Borsic, A., Brown, B., Dixon, P., Faes, T.J., Frerichs, I., Gagnon, H., Gärber, Y., Grychtol, B.: GREIT: a unified approach to 2D linear EIT reconstruction of lung images. Physiol. Meas. 30(6), S35–S55 (2009)

    Article  Google Scholar 

  33. Kauppinen, P., Hyttinen, J., Malmivuo, J.: Sensitivity distribution visualizations of impedance tomography measurement strategies. Int. J. Bioelectromagn. 8(1), 1–9 (2006)

    Google Scholar 

  34. Adler, A., Gaggero, P.O., Maimaitijiang, Y.: Adjacent stimulation and measurement patterns considered harmful. Physiol. Meas. 32(7), 731–744 (2011)

    Article  Google Scholar 

  35. McCarter, W.J., Chrisp, T.M., Starrs, G., Holmes, N., Basheer, L., Basheer, P.A.M., Nanukuttan, S.V.: Developments in monitoring techniques for durability assessment of cover-zone concrete. In: 2nd International Conference on Durability of Concrete and Structures, Sapporo, Japan (2010)

  36. McCarter, W.J., Chrisp, T.M., Starrs, G., Basheer, P.A.M., Blewett, J.: Field monitoring of electrical conductivity of cover-zone concrete. Cem. Concr. Compos. 27(7), 809–817 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge financial support from the School of Energy, Geoscience, Infrastructure and Environment at Heriot-Watt University. Two of the Authors (DS and HMT) also wish to acknowledge the financial support provided by Heriot-Watt University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Suryanto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suryanto, B., Saraireh, D., Kim, J. et al. Imaging water ingress into concrete using electrical resistance tomography. Int J Adv Eng Sci Appl Math 9, 109–118 (2017). https://doi.org/10.1007/s12572-017-0190-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12572-017-0190-9

Keywords

Navigation