Skip to main content
Log in

Thermo-responsive nanogel dispersions: dynamics and phase behaviour

  • Cover Article
  • Published:
International Journal of Advances in Engineering Sciences and Applied Mathematics Aims and scope Submit manuscript

Abstract

The self assembly of nano or sub-micron sized particles into ordered structures have gained wide spread recognition due to their importance in fundamental studies as well as their practical applications in a wide range of disciplines. Deionised suspensions of charged polystyrene nanospheres exhibit long-range order at very dilute conditions (volume fraction ϕ ~ 0.001) whereas in hard-sphere colloids the crystallization occurs at much higher values (ϕ ~ 0.5). In these dispersions the particle size is fixed and temperature is not a controllable parameter to investigate the phase behaviour, whereas aqueous dispersions of thermo-responsive poly(N-isopropylacrylamide) (PNIPAM) nanoparticles exhibit rich phase behaviour upon varying the temperature due to the variation in particle size as well as inter-particle interactions. This paper discusses the static/dynamic light scattering and confocal laser scanning microscopy studies on aqueous suspensions of PNIPAM nanogel particles having different particle number densities as a function of temperature. We report here our recent observations: (a) A liquid-like ordered PNIPAM nanogel dispersion exhibiting a fluid to fluid transition as a function of temperature (b) Violation of the dynamical criterion of freezing in PNIPAM nanogel liquid undergoing freezing (c) Dependence of crystal structure on the method of re-crystallization and (d) A split second peak in three-dimensional pair-correlation function of PNIPAM nanogel crystals. Present results are discussed in the light of those reported for hard-sphere and charged colloidal suspensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Tata, B.V.R., Jena, S.S.: Ordering, dynamics and phase transitions in charged colloids. Solid State Commun. 139, 562–580 (2006)

    Article  Google Scholar 

  2. Tata, B.V.R.: Structural ordering and phase behaviour of charged colloids. In: Maruyama, S., Tokuyama, M. (eds.) Statistical Physics of Complex Fluids, Chapter 4, pp. 5–40. Tohoku University Press, Sendai, Japan (2007)

    Google Scholar 

  3. Pusey, P.N., van Megen, W.: Phase behaviour of concentrated suspensions of nearly hard colloidal spheres. Nature 320, 340–342 (1986)

    Article  Google Scholar 

  4. Chakraborthi, J., Krishnaswamy, H.R., Sengupta, S., Sood, A.K.: Density functional theory of freezing of charge stabilized colloidal suspensions. In: Arora, A.K., Tata, B.V.R. (eds.) Ordering Phase Transitions in Charged Colloids, pp. 236–257. VCH Publishers, New York (1996)

    Google Scholar 

  5. Sood, A.K.: Structural ordering in colloidal suspensions. In: Eherenreich, H., Turnbull, D. (eds.) Solid State Physics, vol. 45, pp. 1–73. Academic Press, New York (1991)

    Google Scholar 

  6. Tata, B.V.R.: Colloidal dispersions and phase transitions in charged colloids. Curr. Sci. 80, 948–958 (2001)

    Google Scholar 

  7. Asher, S.A., Flaugh, P.L., Washinger, G.: Crystalline colloidal Bragg diffraction devices: the basis for a new generation of Raman Instrumentation. Spectroscopy 1, 26–31 (1986)

    Google Scholar 

  8. Pan, G., Kesavamoorthy, R., Asher, S.A.: Optically nonlinear Bragg diffracting nanosecond optical switches. Phys. Rev. Lett. 78, 3860–3863 (1999)

    Article  Google Scholar 

  9. Holtz, J.H., Asher, S.A.: Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials. Nature 389, 829–832 (1997)

    Article  Google Scholar 

  10. Toyotama, A., Yamanaka, J., Shinohara, M., Onda, S., Sawada, T., Yonese, M., Uchida, F.: Gel immobilization of centimeter-sized and uniform colloidal crystals formed under temperature gradient. Langmuir 25, 589–593 (2009)

    Article  Google Scholar 

  11. Debord, J.D., Lyon, L.A.: Thermoresponsive photonic crystals. J. Phys. Chem. B 104(27), 6327–6331 (2000)

    Article  Google Scholar 

  12. Wijnhoven, J.E.G., Los, W.L.: Preparation of photonic crystals made of air spheres in titania. Science 281, 802–804 (1998)

    Article  Google Scholar 

  13. Velev, O.D., Lenhoff, A.M.: Colloidal crystals as templates for porous materials. Curr. Opinion Colloid Interface Sci. 5, 56–63 (2000)

    Article  Google Scholar 

  14. Arora, A.K., Tata, B.V.R.: Order-disorder transition in charge-polydisperse colloids. In: Arora, A.K., Tata, B.V.R. (eds.) Ordering Phase Transitions in Charged Colloids, pp. 181–205. VCH Publishers, New York (1996)

    Google Scholar 

  15. Brijitta, J., Tata, B.V.R., Kaliyappan, T.: Phase behavior of poly(N-isopropylacrylamide) nanogel dispersions: temperature dependent particle size and interactions. J. Nanosci. Nanotechnol. 9, 5323–5328 (2009)

    Article  Google Scholar 

  16. Wu, J., Zhou, B., Hu, Z.: Phase behavior of thermally responsive microgel colloids. Phys. Rev. Lett. 90, 4–048304 (2003)

    Google Scholar 

  17. Brijitta, J., Tata, B.V.R., Joshi, R.G., Kaliyappan, T.: Random hcp and fcc structures in thermoresponsive microgel crystals. J. Chem. Phys. 131, 074904–074908 (2009)

    Article  Google Scholar 

  18. Berne, B.J., Pecora, R.: Dynamic Light Scattering. Wiley, New York (1975)

    Google Scholar 

  19. Tata, B.V.R., Raj, B.: Characterization of soft condensed matter using confocal microscopy. In: Amarendra, G., Raj, B., Manghnani, M.H. (eds.) Recent Advances in Materials Characterization, pp. 123–156. University Press, Hyderabad (2007)

    Google Scholar 

  20. Verhaegh, N.A.M., van Duijneveldt, J.S., van Blaaderen, A., Lekkerkerker, H.N.W.: Direct observation of stacking disorder in a colloidal crystal. J. Chem. Phys. 102, 1416–1423 (1995)

    Article  Google Scholar 

  21. Ballauff, M., Lu, Y.: ‘‘Smart’’ nanoparticles: preparation, characterization and applications. Polymer 48, 1815–1823 (2007)

    Article  Google Scholar 

  22. Flory, P.J.: Principles of Polymer Chemistry. Cornell University Press, Ithaca (1953)

    Google Scholar 

  23. Wu, J., Hu, Z.B.: Microgel dispersions colloidal forces and phase behavior. In: Schwarz, J., Contescu, C., Putyera, K. (eds.) Encyclopedia of Nanoscience and Nanotechnology, pp. 1967–1976. Marcel Dekker Inc, New York (2004)

    Google Scholar 

  24. Hino, T., Prausnitz, J.M.: Swelling equilibria for heterogeneous polyacrylamide gels. J. Appl. Polym. Sci. 62, 1635–1640 (1996)

    Article  Google Scholar 

  25. Tang, S.J., Hu, Z.B., Zhou, B., Cheng, Z.D., Wu, J.Z., Marquez, M.: Melting kinetics of thermally responsive microgel crystals. Macromolecules 40, 9544–9548 (2007)

    Article  Google Scholar 

  26. Takata, S., Suzuki, K., Norisuye, T., Shibayama, M.: Dependence of shrinking kinetics of poly(N-isopropylacrylamide) gels on preparation temperature. Polymer 43, 3101–3107 (2002)

    Article  Google Scholar 

  27. Saunders, B.R.: On the structure of poly(N-isopropylacrylamide) microgel particles. Langmuir 20, 3925–3932 (2004)

    Article  Google Scholar 

  28. Bartsch, E., Frenz, V., Baschnagel, J., Schärtl, W., Sillescu, W.: The glass transition dynamics of polymer micronetwork colloids. A mode coupling analysis. J. Chem. Phys. 106, 3743–3756 (1997)

    Article  Google Scholar 

  29. Löwen, H., Palberg, T., Simon, R.: Dynamical criterion for freezing of colloidal liquids. Phys. Rev. Lett. 70, 1557–1560 (1993)

    Article  Google Scholar 

  30. Noyola, M.M.: Long-time self-diffusion in concentrated colloidal dispersions. Phys. Rev. Lett. 60, 2705–2708 (1988)

    Article  Google Scholar 

  31. Mazur, P., Geigenmüller, U.: A simple formula for the short-time self-diffusion coefficient in concentrated suspensions. Physica 146A, 657–661 (1987)

    Article  Google Scholar 

  32. Grüner, F., Lehmann, W.: Multiple scattering of light in a system of interacting Brownian particles. J. Phys. A Math. Gen. 13, 2155–2170 (1980)

    Article  Google Scholar 

  33. Sabareesh, K.P.V., Jena, S.S., Tata, B.V.R.: Dynamic light scattering studies on photo polymerized and chemically cross-linked polyacrylamide hydrogels, vol 832. In: Tokuyama, M., Maruyama, S. (eds.) Proceedings of 2nd international conference on flow dynamics, Sendai, Japan, pp. 307–310. American Institute of Physics, New York, NY (2006)

  34. Gao, J., Hu, Z.: Optical properties of N-Isopropylacrylamide microgel spheres in water. Langmuir 18, 1360–1367 (2002)

    Article  Google Scholar 

  35. Iyer, A.S., Lyon, L.A.: Self-healing colloidal crystals. Angew. Chem. Int. Ed. 48, 4562–4566 (2009)

    Article  Google Scholar 

  36. Joshi, R. G., Tata, B. V. R., Brijitta J.: Pressure tuning of Bragg diffraction in stimuli responsive microgel crystals. In: 55th DAE Solid State Symp. Manipal, India (2010) (submitted)

  37. Senff, H., Richtering, W.: Temperature sensitive microgel suspensions: colloidal phase behavior and rheology of soft spheres. J. Chem. Phys. 111, 1705–1711 (1999)

    Article  Google Scholar 

  38. Kesavamoorthy, R., Sood, A.K., Tata, B.V.R., Arora, A.K.: The split in the second peak in the structure factor of binary colloidal suspensions: glass-like order. J. Phys. C Solid State Phys. 21, 4737–4748 (1988)

    Article  Google Scholar 

  39. Zuzic, M., Ivlev, A.V., Goree, J., Morfill, G.E., Thomas, H.M., Rothermel, H., Konopka, U., Sütterlin, R., Goldbeck, D.D.: Three-dimensional strongly coupled plasma crystal under gravity conditions. Phys. Rev. Lett. 85, 4064–4067 (2000)

    Article  Google Scholar 

  40. Dolbnya, I.P., Petukhov, A.V., Aarts, D.G.A.L., Vroege, G.J., Lekkerkerker, H.N.W.: Coexistence of rhcp and fcc phases in hard-sphere colloidal crystals. Europhys. Lett. 72(6), 962–968 (2005)

    Article  Google Scholar 

  41. Elliot, M.S., Bristol, B.T.F., Poon, W.C.K.: Direct measurement of stacking disorder in hard-sphere colloidal crystals. Physica A 235, 216–223 (1997)

    Article  Google Scholar 

  42. Ise, N., Ito, K., Matsuoka, H., Yoshida, H.: Colloidal dispersions studied by microscopy and X-ray scattering. In: Arora, A.K., Tata, B.V.R. (eds.) Ordering Phase Transitions in Charged Colloids, pp. 101–147. VCH Publishers, New York (1996)

    Google Scholar 

  43. O’Malley, B., Snook, I.: Structure of hard-sphere fluid and precursor structures to crystallization. J. Chem. Phys. 123, 11–054511 (2005)

    Google Scholar 

  44. Alsayed, A.M., Islam, M.F., Zhang, J., Collings, P.J., Yodh, A.G.: Premelting at defects within bulk colloidal crystals. Science 309, 1207–1210 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

Authors thank Dr. A. K. Arora, Dr. C. S. Sundar and Mr. M. C. Valsakumar for useful discussions and Dr. Baldev Raj for support and encouragement. Second author acknowledges UGC-DAE CSR for financial support. Authors thank Mr. Amit Kamle for the help in preparing Fig. 1a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. V. R. Tata.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tata, B.V.R., Brijitta, J. & Joshi, R.G. Thermo-responsive nanogel dispersions: dynamics and phase behaviour. Int J Adv Eng Sci Appl Math 5, 240–249 (2013). https://doi.org/10.1007/s12572-010-0016-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12572-010-0016-5

Keywords

Navigation