Skip to main content
Log in

Two-layer models for shallow avalanche flows over arbitrary variable topography

  • Original Paper
  • Published:
International Journal of Advances in Engineering Sciences and Applied Mathematics Aims and scope Submit manuscript

Abstract

This paper presents a three-dimensional, two-layer model for shallow geophysical mass flows, such as debris flows, hydraulic sediment transport, or sub-aquatic turbidity currents down arbitrary natural topographic terrains. The bottom layer is a dense granular fluid which interacts with the stagnant basal topography through an erosion/deposition mechanism. Above this layer is a lighter fluid layer. There is no mass exchange at the layer interface and at the free upper surface, and the materials in both layers are treated as density preserving. The intrinsic modelling equations are written in non-dimensional form and then formulated relative to a topography-adjusted coordinate system. The mass balance equations and momentum balance equations parallel to the bottom topography are depth-averaged over the layers. The emerging governing system of equations is subsequently simplified on the basis of problem-adapted scales, in which a small parameter ε, the shallowness parameter, plays a central role. The proposed ordering scheme is motivated by an earlier analysis, [1], and depends on the rheological complexities of the stress parameterizations of the two fluids. The ensuing equations are complemented by constitutive assumptions in each layer, at the bottom topography and at the layer interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Luca I., Hutter K., Tai Y.C. and Kuo C.Y., A hierarchy of avalanche models on arbitrary topography, Acta Mech., 205, 121–149 (2009)

    Article  MATH  Google Scholar 

  2. Luca I., Tai Y.C. and Kuo C.Y., Non-Cartesian topography-based avalanche equations and approximations of gravity driven flows of ideal and viscous fluids, Math. Mod. Meth. Appl. Sci., 19, 127–171 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  3. Luca I., Tai Y.C. and Kuo C.Y., Modelling shallow gravity-driven solid-fluid mixtures over arbitrary topography, Comm. Math. Sci., 7, 1–36 (2009)

    MATH  MathSciNet  Google Scholar 

  4. Morales de Luna T., A Saint Venant model for gravity driven shallow water flows with variable density and compressibility effects, Mathematical and Computer Modelling, 47, 436–444 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  5. Fernáandez-Nieto E.D., Bouchut F., Bresch D., Castro Díaz M.J. and Mangeney A., A new Savage-Hutter type model for submarine avalanches and generated tsunami, J. Comput. Phys., 227, 7720–7754 (2008)

    Article  MathSciNet  Google Scholar 

  6. Truesdell C. and Toupin R., Handbuch der Physik, III/1, ed. Flügge S., Springer Verlag, Berlin, Göttingen, Heidelberg (1960)

    Google Scholar 

  7. Bouchut F. and Westdickenberg M., Gravity driven shallow water models for arbitrary topography, Comm. Math. Sci., 2(3), 359–389 (2004)

    MATH  MathSciNet  Google Scholar 

  8. De Toni S. and Scotton P., Two-dimensional mathematical and numerical model for the dynamics of granular avalanches, Cold Regions Science and Technology, 43, 36–48 (2005)

    Article  Google Scholar 

  9. Bouchut F., Fernández-Nieto E.D., Mangeney A. and Lagrée P.-Y., On new erosion models of Savage-Hutter type for avalanches, Acta Mech., 199, 181–208 (2008)

    Article  MATH  Google Scholar 

  10. Tai Y.C. and Kuo C.Y., A new model of granular flows over general topography with erosion and deposition, Acta Mech., 199, 71–96 (2008)

    Article  MATH  Google Scholar 

  11. Fraccarollo L. and Capart H., Riemann wave description of erosional dam-break flows, J. Fluid Mech., 461, 183–228 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  12. Pudasaini S.P. and Hutter K., Avalanche Dynamics, Berlin Heidelberg, New York: Springer (2007)

    Google Scholar 

  13. Iverson R.M. and Denlinger R.G., Flow of variably fluidized granular masses across three-dimensional terrain. 1. Coulomb mixture theory, J. Geophysical Res., 106(B1), 537–552 (2001)

    Article  Google Scholar 

  14. Iverson R.M., The physics of debris flows, Rev. Geophys., 35, 245–296 (1997)

    Article  Google Scholar 

  15. Savage S.B. and Hutter K., The motion of a finite mass of granular material down a rough incline, J. Fluid. Mech., 199, 177–215 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  16. Hutter K., Siegel M., Savage S.B. and Nohguchi Y., Two-dimensional spreading of a granular avalanche down an inclined plane, Part I. Theory. Acta Mech., 100, 37–68 (1993)

    MATH  MathSciNet  Google Scholar 

  17. Hui W.H., Li P.Y. and Li Z.W., A unified coordinate system for solving the two-dimensional Euler equations, J. Comput. Phys., 153, 596–637 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  18. Hui W.H., The unified coordinate system in Computational Fluid Dynamics, Commun. Comput. Phys., 2, 557–610 (2007)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Luca.

Additional information

on leave from Department of Mathematics II, University Politehnica of Bucharest, Splaiul Independentei 313, 79590 Bucharest, Romania

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luca, I., Hutter, K., Kuo, C.Y. et al. Two-layer models for shallow avalanche flows over arbitrary variable topography. Int J Adv Eng Sci Appl Math 1, 99–121 (2009). https://doi.org/10.1007/s12572-010-0006-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12572-010-0006-7

Keywords

Navigation