Skip to main content

Some Remarks on Avalanches Modelling: An Introduction to Shallow Flows Models

  • Chapter
  • First Online:
Advances in Numerical Simulation in Physics and Engineering

Part of the book series: SEMA SIMAI Springer Series ((SEMA SIMAI,volume 3))

  • 1235 Accesses

Abstract

The main goal of these notes is to present several depth-averaged models with application in granular avalanches. We begin by recalling the classical Saint-Venant or Shallow Water equations and present some extensions like the Saint-Venant–Exner model for bedload sediment transport. The first part is devoted to the derivation of several avalanche models of Savage–Hutter type, using a depth-averaging procedure of the 3D momentum and mass equations. First, the Savage–Hutter model for aerial avalanches is presented. Two other models for partially fluidized avalanches are then described: one in which the velocities of both the fluid and the solid phases are assumed to be equal, and another one in which both velocities are unknowns of the system. Finally, a Savage–Hutter model for submarine avalanches is derived. The second part is devoted to non-newtonian models, namely viscoplastic fluids. Indeed, a one-phase viscoplastic model can also be used to simulate fluidized avalanches. A brief introduction to Rheology and plasticity is presented in order to explain the Herschel–Bulkley constitutive law. We finally present the derivation of a shallow Herschel–Bulkley model.

These notes are dedicated to D. Antonio Valle Sánchez (1930–2012). D. Antonio was the first Spanish PhD student of Jacques-Louis Lions. He can be considered as one of the founders of modern Applied Mathematics in Spain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Acary-Robert, C., Fernández-Nieto, E., Narbona-Reina, G., Vigneaux, P.: A well-balanced finite volume-augmented Lagrangian method for an integrated Herschel-Bulkley model. J. Sci. Comput. 53, 608–641 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ancey, C.: Plasticity and geophysical flows: a review. J. Non-Newtonian Fluid Mech. 142, 4–35 (2007)

    Article  MATH  Google Scholar 

  3. Ancey, C., Cochard, S.: The dam-break problem for Herschel-Bulkley viscoplastic fluids down steep flumes. J. Non-Newtonian Fluid Mech. 158, 18–35 (2009)

    Article  MATH  Google Scholar 

  4. Anderson, T.B., Jackson, R.: A fluid mechanical description of fluidized beds. Ind. Eng. Chem. Fundam. 6, 527–539 (1967)

    Article  Google Scholar 

  5. Aradian, A., Raphael, E., de Gennes, P.G.: Surface flow of granular materials: a short introduction to some recent models. C. R. Phys. 3, 187–196 (2002)

    Article  Google Scholar 

  6. Aranson, I.S., Tsimring, L.S.: Continuum theory of partially fluidized granular flows. Phys. Rev. E. 65, 061303 (2002)

    Article  MathSciNet  Google Scholar 

  7. Audusse, E., Bristeau, M.-O., Perthame, B., Sainte-Marie, J.: A multilayer Saint-Venant system with mass exchanges for shallow water flows. Derivation and numerical validation. ESAIM Math. Model. Numer. Anal. 45, 169–200 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  8. Balmforth, N.J., Craster, R.V., Rust, A.C., Sassi, R.: Viscoplastic flow over an inclined surface. J. Non-Newtonian Fluid Mech. 139, 103–127 (2006)

    Article  MATH  Google Scholar 

  9. Batchelor, G.K.: An Introduction to Fluid Dynamics. Cambridge University Press, New Delhi (2000)

    Book  Google Scholar 

  10. Bingham, E.C.: Fluidity and Plasticity. Mc Graw-Hill, New York (1922)

    Google Scholar 

  11. Bouchut, F., Mangeney-Castelnau, A., Perthame, B., Vilotte, J.P.: A new model of Saint Venant and Savage-Hutter type for gravity driven shallow flows. C. R. Acad. Sci. Paris Ser. I 336, 531–536 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  12. Bouchut, F., Fernández-Nieto, E.D., Mangeney, A., Lagree, P.Y.: On new erosion models of Savage-Hutter type for avalanches. Acta Mecha. 199, 181–208 (2008)

    Article  MATH  Google Scholar 

  13. Bresch, D., Desjardins, B.: Existence of global weak solutions for a 2D viscous shallow water equations and convergence to the quasi-geostrophic model. Commun. Math. Phys. 238, 211–223 (2003)

    MATH  MathSciNet  Google Scholar 

  14. Bresch, D., Fernandez-Nieto, E.D., Ionescu, I.R., Vigneaux, P.: Augmented Lagrangian method and compressible visco-plastic flows: Applications to shallow dense avalanches. In: Advances in Mathematical Fluid Mechanics, pp. 57–89. Birkhauser, Basel (2010)

    Google Scholar 

  15. Castro-Díaz, M.J., Fernández-Nieto, E.D., Ferreiro, A.: Sediment transport models in Shallow Water equations and numerical approach by high order finite volume methods. Comput. Fluids 37, 299–316 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  16. Castro-Díaz, M.J., Fernández-Nieto, E.D., Ferreiro, A., Parés, C.: Two-dimensional sediment transport models in shallow water equations: a second order finite volume approach on unstructured meshes. Comput. Meth. App. Mech. Eng. 198, 2520–2538 (2009)

    Article  MATH  Google Scholar 

  17. Cordier, S., Le, M., Morales de Luna, T.: Bedload transport in shallow water models: why splitting (may) fail, how hyperbolicity (can) help. Adv. Water Resour. 34, 980–989 (2011)

    Google Scholar 

  18. Dressler, R.F.: New nonlinear shallow equations with curvature. J. Hydraul. Res. 16, 205–22 (1978)

    Article  Google Scholar 

  19. Duvaut, G., Lions, J.-L.: Inequalities in Mechanics and Physics. Springer, Berlin (1976)

    Book  MATH  Google Scholar 

  20. Einstein, H.A.: The bed load function for sediment transport in open channel flows. Technical Bulletin no. 1026. U.S. Department of Agriculture, Soil Conservation Service, Washington, DC (1950)

    Google Scholar 

  21. Fernandez-Nieto, E.D., Bouchut, F., Bresch, D., Castro-Díaz, M.J., Mangeney, A.: A new Savage-Hutter type model for submarine avalanches and generated tsunami. J. Comput. Phys. 227, 7720–7754 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  22. Fernández-Nieto, E.D., Noble, P., Vila, J.P.: Shallow Water equations for Non-Newtonian fluids. J. Non-Newtonian Fluid Mech. 165, 712–732 (2010)

    Article  MATH  Google Scholar 

  23. Fernández-Nieto, E.D., Koné, E.H., Chacón, T.: A multilayer method for the hydrostatic Navier-Stokes equations: a particular weak solution. J. Sci. Comput. (2013). doi: 10.1007/s10915-013-9802-0

    Google Scholar 

  24. Ferrari, S., Saleri, F.: A new two-dimensional shallow water model including pressure effects and slow varying bottom topography. Math. Model. Numer. Anal. 38, 211–234 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  25. Gerbeau, J., Perthame, B.: Derivation of viscous Saint-Venant system for laminar shallow water: numerical validation. Discrete Contin. Dyn. Syst. Ser. B 1, 89–102 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  26. Grass, A.J.: Sediments transport by waves and currents. SERC London Centre for Marine Technology, Report No. FL29 (1981)

    Google Scholar 

  27. Gray, J.M.N.T.: Granular flow in partially filled slowly rotating drums. J. Fluid Mech. 441, 1–29 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  28. Heinrich, P., Piatanesi, A., Hébert, H.: Numerical modelling of tsunami generation and propagation from submarine slumps: the 1998 Papua New Guinea event. Geophys. J. Int. 145, 97–11 (2001)

    Article  Google Scholar 

  29. Iverson, R.M., Denlinger, R.P.: Flow of variably fluidized granular masses across three-dimensional terrain. J. Geophys. Res. 106, 537–552 (2001)

    Article  Google Scholar 

  30. Jackson, R.: The Dynamics of Fluidized Particles. Cambridge Monographs on Mechanics. Cambridge University Press, New York (2000)

    MATH  Google Scholar 

  31. Khakhar, D.V., Orpe, A.V., Andresén, P., Ottino, J.M.: Surface flow of granular materials: model and experiments in heap formation. J. Fluid Mech. 441, 225–264 (2001)

    Article  Google Scholar 

  32. Macías, J., Fernández-Salas, L.M., González-Vida, J.M., Vázquez, J.T., Castro Días, M.J., Bárcenas, P., del Río, P., Díaz, V., Morales de Luna, T., de la Asunción, M., Parés, C.: Deslizamientos Submarinos y Tsunamis en el Mar de Alborán. Un ejemplo de modelización, vol. 6. Instituto Español de Oceanografía, Spain (2012)

    Google Scholar 

  33. Madsen, P.A., Bingham, H.B., Schaffer, H.A.: Boussinesq-type formulations for fully nonlinear and extremely dispersive water waves: derivation and analysis. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 459, 1075–104 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  34. Mangeney-Castelnau, A., Bouchut, F., Vilotte, T.P., Lajeneusse, E., Aubertin, A., Pirulli, M.: On the use of Saint-Venant equations to simulate the spreading of a granular mass. J. Geophys. Res. 110, B09103 (2005)

    Google Scholar 

  35. Marche, F.: Theoretical and numerical study of Shallow Water models. Application to Nearshore hydrodynamics. Thesis of the University of Bordeaux, France (2005)

    Google Scholar 

  36. Meyer-Peter, E., Müller, R.: Formulas for bed-load transport. Report on 2nd Meeting of International Association for Hydraulic Research, 39–64. Stockholm (2005)

    Google Scholar 

  37. Morales de Luna, T.: A Saint Venant model for gravity driven shallow water flows with variable density and compressibility effects. Math. Comput. Model. 47, 436–444 (2008)

    Google Scholar 

  38. Morales de Luna, T., Castro Díaz, M.J., Parés Madroñal, C., Fernández Nieto, E.D.: On a shallow water model for the simulation of turbidity currents. Commun. Comput. Phys. 6(4), 848–882 (2009)

    Google Scholar 

  39. Narbona, G., Zabsonre, J., Fernandez-Nieto, E.D., Bresch, D.: Derivation of a bilayer model for shallow water equations with viscosity: numerical validation. Comput. Model. Eng. Sci. 43, 27–71 (2009)

    MATH  Google Scholar 

  40. Nielsen, P.: Coastal bottom boundary layers and sediment transport. In: Advanced Series on Ocean Engineering, vol. 4. World Scientific Publishing, Singapore (1992)

    Google Scholar 

  41. Oswald, P.: Rheophysics: The Deformation and Flow of Matter. Cambridge University Press, New York (2009)

    Google Scholar 

  42. Pelanti, M., Bouchut, F., Mangeney, A.: A roe-type scheme for two-phase Shallow granular flows with bottom topography. Math. Model. Numer. Anal. 42, 851–885 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  43. Pirulli, M., Bristeau, M.O., Mangeney, A., Scavia, C.: The effect of the earth pressure coefficients on the runout of granular material. Environ. Model. Softw. 22, 1437–1454 (2007)

    Article  Google Scholar 

  44. Pitman, E.B., Le, L.: A two-fluid model for avalanche and debris flows. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 363,1573–1601 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  45. Pudasaini, S., Hutter, K.: Avalanche Dynamics. Springer, New York (2007)

    Google Scholar 

  46. Saint-Venant, A.J.C.: Théorie du mouvement non-permanent des eaux, avec application aux crues des rivières et à l’introduction des marées dans leur lit. C. R. Acad. Sci. Paris 73, 147–54 (1871)

    MATH  Google Scholar 

  47. Savage, S.B., Hutter, K.: The dynamics of avalanches of granular materials from initiation to run-out. Acta Mech. 86, 201–223 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  48. Tanner, R.I., Walters, K.: Rheology: An Historical Perspective. Elsevier, Amsterdam (1998)

    MATH  Google Scholar 

  49. Van Rijn, L.C.: Sediment transport (III): bed forms and alluvial roughness. J. Hydraul. Div. Proc. ASCE 112, 1733–1754 (1984)

    Article  Google Scholar 

  50. Wieland, M., Gray, J.M.N.T., Hutter, K.: Channelized free-surface flow of cohesionless granular avalanches in a chute with shallow lateral curvature. J. Fluid Mech. 392, 73–100 (1999)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The first author would like to thanks the organizers of the Jacques-Louis Lions Spanish-French school for the invitation. The second author would like to thank the Institute of Mathematics of the University of Seville (IMUS) for the financial support to work on the numerical analysis of models for visco-plastic avalanches.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrique D. Fernández-Nieto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fernández-Nieto, E.D., Vigneaux, P. (2014). Some Remarks on Avalanches Modelling: An Introduction to Shallow Flows Models. In: Parés, C., Vázquez, C., Coquel, F. (eds) Advances in Numerical Simulation in Physics and Engineering. SEMA SIMAI Springer Series, vol 3. Springer, Cham. https://doi.org/10.1007/978-3-319-02839-2_2

Download citation

Publish with us

Policies and ethics