Advertisement

Food Security

, Volume 8, Issue 2, pp 307–329 | Cite as

Crops that feed the world 11. Pearl Millet (Pennisetum glaucum L.): an important source of food security, nutrition and health in the arid and semi-arid tropics

  • A. K . JukantiEmail author
  • C. L. Laxmipathi Gowda
  • K. N. Rai
  • V. K. Manga
  • R. K. Bhatt
Review

Abstract

Pearl millet is a major cereal in the arid and semi-arid regions of Asia and Africa. It is primarily cultivated for grain production, but its stover is also valued as dry fodder. Pearl millet is resilient to climate change due to its inherent adaptability to drought and high temperatures. It is also tolerant of saline and acid soils, and is well adapted to marginal lands with low productivity. Pearl millet germplasm exhibits large genetic variability for yield components; and various agronomic, adaptation and nutritional traits. Open pollinated varieties and hybrids are two important cultivar options, but higher productivity is realized through hybrids. Pearl millet has fewer pest and disease problems compared to other cereals and is suited to different cropping systems. It is highly responsive to improved crop management practices, as witnessed in parts of India where it is grown as an irrigated summer crop that produces higher yields and better quality grain. Pearl millet has high nutritional value in terms of high levels of energy, dietary fibre, proteins with a balanced amino acid profile, many essential minerals, some vitamins, and antioxidants. These play a significant role in prevention of important human ailments such as diabetes, cancer, cardiovascular and neurodegenerative diseases. There is great potential for harnessing these positive attributes through genetic improvement, improved crop management, and grain processing and food products technologies. These should help to develop greater global awareness of the importance of this crop for food and nutritional security.

Keywords

Pearl millet Adaptations Production constraints Crop management Nutrition Health 

Notes

Acknowledgments

We would like to thank Dr. M. Govindaraj, Scientist, ICRISAT, India and Mr. Prakash Kalwani, Senior Research Fellow, ICAR-CAZRI, India for helping us with preparation of the manuscript. Partial funding support to KNR from HarvestPlus Biofortification Program of the CGIAR is gratefully acknowledged.

References

  1. Abdalla, A. A., El Tinay, A. H., Mohamed, B. E., & Abdalla, A. H. (1998). Proximate composition, starch, phytate and mineral contents of 10 pearl millet genotypes. Food Chemistry, 63(2), 243–246.CrossRefGoogle Scholar
  2. Abdel Rahman, S. M., Babiker, E. E., & El Tinay, A. H. (2005). Effect of fermentation on antinutritional factors and HCl extractability of minerals of pearl millet cultivars. Journal of Food Technology, 3(4), 516–522.Google Scholar
  3. Adeola, O., & Orban, J. I. (1995). Chemical composition and nutrient digestibility of pearl millet (Pennisetum glaucum) fed to growing pigs. Journal of Cereal Science, 22, 177–184.CrossRefGoogle Scholar
  4. Agricultural Statistics, GOI (2014). Pearl Millet. In Agricultural Statistics at a Glance - 2014, Government of India (pp. 85–86). New Delhi: Oxford University Press.Google Scholar
  5. Alais, C., & Linden, G. (1991). Food biochemistry. New York: Ellis Harwood Ltd.CrossRefGoogle Scholar
  6. Ali, M. A. M., El Tinay, A. H., & Abdalla, A. H. (2003). Effect of fermentation on the in vitro protein digestibility of pearl millet. Food Chemistry, 80, 51–54.CrossRefGoogle Scholar
  7. Andrews, D. J. (1974). Responses of sorghum varieties to intercropping. Experimental Agriculture, 10, 57–63.CrossRefGoogle Scholar
  8. Andrews, D. J., & Kumar, K. A. (1992). Pearl millet for food, feed and forage. Advances in Agronomy, 48, 89–139.CrossRefGoogle Scholar
  9. Bagayoko, M., Maman, N., Palé, S., Sirifi, S., Taonda, S. J. B., Traore, S., & Mason, S. C. (2011). Microdose and N and P fertilizer application rates for pearl millet in West Africa. African Journal of Agricultural Research, 6(5), 1141–1150.Google Scholar
  10. Bailey, A. V., Piccolo, B., Sumrell, G., & Burton, G. W. (1979). Amino acid profiles, chemical scores, and mineral contents of some pearl millet inbred lines. Journal of Agricultural and Food Chemistry, 27(6), 1421–1423.PubMedCrossRefGoogle Scholar
  11. Barikmo, I., Ouattara, F., & Oshaug, A. (2004). Protein, carbohydrate and fibre in cereals from Mali—how to fit the results in a food composition table and database. Journal of Food Composition and Analysis, 17, 291–300.CrossRefGoogle Scholar
  12. Bationo, A., & Mokwunye, A. U. (1991). Role of manures and crop residue in alleviating soil fertility constraints to crop production: with special reference to the sahelian and sudanian zones of West Africa. Fertilizer Research, 29, 117–125.CrossRefGoogle Scholar
  13. Blümmel, M., & Rai, K. N. (2003). Stover quality and grain yield relationships and heterosis effects in pearl millet. International Sorghum and Millets Newsletter, 44, 141–145.Google Scholar
  14. Blümmel, M., Bidinger, F. R., & Hash, C. T. (2007). Management and cultivar effects on ruminant nutritional quality of pearl millet (Pennisetum glaucum (L.) R. Br.) stover II. effects of cultivar choice on stover quality and productivity. Field Crops Research, 103, 129–138.CrossRefGoogle Scholar
  15. Bornet, F. R. J., Jardy-Gennetier, A.-E., Jacquet, N., & Stowell, J. (2007). Glycemic response to foods: impact on satiety and long-term weight regulation. Appetite, 49, 535–553.PubMedCrossRefGoogle Scholar
  16. Breese, W. A., Hash, C. T., Devos, K. M., & Howarth, C. J. (2002). Pearl millet genomics – an overview with respect to breeding for resistance to downy mildew. In J. F. Leslie (Ed.), Sorghum and millets pathology (pp. 243–246). Ames: Iowa State Press.Google Scholar
  17. Brunken, J. N. (1977). A systematic study of Pennisetum sect. Pennisetum (gramineae). American Journal of Botany, 64, 161–176.CrossRefGoogle Scholar
  18. Brunken, J. N., de Wet, J. M. J., & Harlan, J. R. (1977). The morphology and domestication of pearl millet. Economic Botany, 31, 163–174.Google Scholar
  19. Buerkert, A., Moser, M., Kumar, A. K., Fürst, P., & Becker, K. (2001). Variation in grain quality of pearl millet from sahelian West Africa. Field Crops Research, 69, 1–11.CrossRefGoogle Scholar
  20. Burton, G. W., Wallace, A. T., & Rachie, K. O. (1972). Chemical composition and nutritive value of pearl millet [Pennisetum typhoides (burm.) stapf and E. C. Hubbard] grain. Crop Science, 12, 187–188.CrossRefGoogle Scholar
  21. Carnovale, E., Lugaro, E., & Lombardi-Boccia, G. (1988). Phytic acid in faba bean and pea: effect on protein availability. Cereal Chemistry, 65, 114–117.Google Scholar
  22. Chandrasekara, A., & Shahidi, F. (2011a). Antiproliferative potential and DNA scission inhibitory activity of phenolics from whole millets. Journal of Functional Foods, 3, 159–170.CrossRefGoogle Scholar
  23. Chandrasekara, A., & Shahidi, F. (2011b). Bioactivities and antiradical properties of millet grains and hulls. Journal of Agricultural and Food Chemistry, 59, 9563–9571.PubMedCrossRefGoogle Scholar
  24. Chandrasekara, A., & Shahidi, F. (2011c). Determination of antioxidant activity in free and hydrolyzed fractions of millet grains and characterization of their phenolic profiles by HPLC-DAD-ESI-MSn. Journal of Functional Foods, 3, 144–158.CrossRefGoogle Scholar
  25. Chandrasekher, G., Raju, D. S., & Pattabiraman, T. N. (1981). Natural plant enzyme inhibitors. α-amylase inhibitors in millets. Journal of the Science of Food and Agriculture, 32, 9–16.CrossRefGoogle Scholar
  26. Chandrasekher, G., Raju, D. S., & Pattabiraman, T. N. (1982). Natural plant enzyme inhibitors. Protease inhibitors in millets. Journal of the Science of Food and Agriculture, 33, 447–450.CrossRefGoogle Scholar
  27. Chauhan, B. M., Suneja, N., & Bhat, C. M. (1986). Nutritive value and fatty acid composition of some high yielding varieties of bajra. Bulletin of Grain Technology, 21, 441–442.Google Scholar
  28. Clark, J. D. (1962). Thc spread of food production in sub-Saharan Africa. The Journal of African History, 3, 211–228.CrossRefGoogle Scholar
  29. Clark, J. D. (1964). The prehistoric origins or African culture. The Journal of African History, 5, 61–183.CrossRefGoogle Scholar
  30. Clayton, W. D. (1972). Gramineae. In F. N. Hepper (Ed.), Flora of West Tropical Africa (pp. 170–465). London: Crown Agents.Google Scholar
  31. Dahlberg, J.A., Wilson, J.P., & Snyder, T. (2003). Sorghum and pearl millet: health foods and industrial products in developed countries. In Alternative uses of sorghum and pearl millet in Asia. Proceedings of expert meeting (pp. 42–59). Patancheru: ICRISAT.Google Scholar
  32. de Wet, J. M. J. (1977). Domestication of African cereals. African Economic History, 3, 15–32.CrossRefGoogle Scholar
  33. de Wet, J. M. J., Bidinger, F. R., & Peacock, J. M. (1992). Pearl millet (Pennisetum glaucum) – a cereal of the Sahel. In G. P. Chapman (Ed.), Desertified grasslands, their biology, and management (pp. 259–267). London: Academic Press.Google Scholar
  34. Desai, B. B., & Zende, G. K. (1979). Role of bajra (Pennisetum typhoides) in human and animal nutrition. Journal of Nutrition and Dietetics, 16, 390.Google Scholar
  35. Dykes, L., & Rooney, L. W. (2006). Sorghum and millet phenols and antioxidants. Journal of Cereal Science, 44, 236–251.CrossRefGoogle Scholar
  36. Dykes, L., & Rooney, L. W. (2007). Phenolic compounds in cereal grains and their health benefits. Cereal Foods World, 52(3), 105–111.Google Scholar
  37. Ejeta, G., Hassen, M. M., & Mertz, E. (1987). In vitro digestibility and amino acid composition of pearl millet (Pennisetum typhoides) and other cereals (pepsin digestibility/protein fractionation/protein quality). PNAS, USA, 84, 6016–6019.CrossRefGoogle Scholar
  38. Elyas, S. H. A., El Tinay, A. H., Yousif, N. E., & Elsheikh, E. A. E. (2002). Effect of natural fermentation on nutritive value and in vitro protein digestibility of pearl millet. Food Chemistry, 78, 75–79.CrossRefGoogle Scholar
  39. Esterbauer, H. (1993). Cytotoxicity and genotoxicity of lipid oxidation products. American Journal of Clinical Nutrition, 57, 7795–7855.Google Scholar
  40. FAO. (1995). Chemical composition and nutritive value. In Sorghum and millets in human nutrition (pp. 49–86). Rome: FAO Food and Nutrition Series (No. 27).Google Scholar
  41. FAO, & ICRISAT. (1996). “The World Sorghum and Millet Economies: Facts, Trends and Outlook”. http://www.fao.org/docrep/W1808E/w1808e00.htm#Contents.
  42. FAOSTAT. (2015) http://faostat.fao.org/site/567/DesktopDefault.aspx?PageID=567. Accessed on 24/07/2015 & 29/10/2015.
  43. Foster-Powell, K., Holt, S. H. A., & Brand-Miller, J. C. (2002). International table of glycemic index and glycemic load values. American Journal of Clinical Nutrition, 76, 5–56.PubMedGoogle Scholar
  44. Fussell, L.K., Serafini, P.G., Bationo, A. & Klaij, M.C. (1987). Management practices to increase yield and yield stability of pearl millet in Africa. In Proceedings of the international Pearl Millet Workshop, 7–11 April 1986, ICRISAT Center, India (pp. 255–267). Patancheru: ICRISAT.Google Scholar
  45. Fussell, L. K., Bidinger, F. R., & Bider, P. (1991). Crop physiology and breeding for drought resistance, research and development. Field Crops Research, 27, 183–199.CrossRefGoogle Scholar
  46. Gautam, R.C. (1990). Resource management to stabilize and improve productivity of dryland pearl millet in India. In International Symposium, IARI, New Delhi.Google Scholar
  47. Geetha, R., Virupaksha, T. K., & Shadaksharaswamy, M. (1997). Relationship between tannin levels and in vitro protein digestibility in finger millet (Eleusine coracana). Journal of Agricultural and Food Chemistry, 25, 1101–1108.Google Scholar
  48. Gowda, C. L. L., Rai, K. N., Reddy, B. V. S., & Saxena, K. B. (2006). Hybrid parents research at ICRISAT. Patancheru: International Crops Research Institute for the Semi-Arid Tropics.Google Scholar
  49. Hadimani, N. A., Muralikrishna, G., Tharanathan, R. N., & Malleshi, N. G. (2001). Nature of carbohydrates and proteins in three pearl millet varieties varying in processing characteristics and kernel texture. Journal of Cereal Science, 33, 17–25.CrossRefGoogle Scholar
  50. Hag, M. E., Tinay, A. H., & Yousif, N. E. (2002). Effect of fermentation and dehulling on starch, total polyphenols, phytic acid content and in vitro protein digestibility of pearl millet. Food Chemistry, 77, 193–196.CrossRefGoogle Scholar
  51. Hamdy, M. M. (1971). Interaction between phosphates & plant proteins. In J. M. DeMan (Ed.), Symposium - phosphates in food processing (p. 83). Westport: Avi Publishing Company.Google Scholar
  52. Hanna, W. W. (1987). Utilization of ild relatives of pearl millet. In J. R. Witcombe, & S. R. Beckerman (Eds.), Proceedings of international pearl millet workshop (pp. 33–42). Patancheru: ICRISAT Center.Google Scholar
  53. Harlan, J.R. (1975) Crops and man. American Society of Agronomy and Crop Science Society of America (pp. 295). Madison.Google Scholar
  54. Hay, F. R., Hamilton, R. S., Furman, B. J., Upadhyaya, H. D., Reddy, K. N., & Singh, S. K. (2013). Cereals. In M. N. Normah, H. F. Chin, & B. M. Reed (Eds.), Conservation of tropical plant species (pp. 293–316). New York: Springer.CrossRefGoogle Scholar
  55. Hulse, J. H., Laing, E. M., & Pearson, O. E. (1980). Sorghum and the millets: their composition and nutritive value. New York: Academic Press.Google Scholar
  56. Jakhar, S. R., Singh, M., & Balia, C. M. (2006). Effect of farmyard manure, phosphorus and zinc levels on growth, yield, quality and economics of pearl millet (Pennisetum glaucum). Indian Journal of Agricultural Sciences, 76(1), 58–61.Google Scholar
  57. Jellum, M. D., & Powell, J. B. (1971). Fatty acid composition of oil from pearl millet seed. Agronomy Journal, 63, 29.CrossRefGoogle Scholar
  58. Johari, A., Kawatra, A., & Potaliya, M. (2015). Development and organoleptic evaluation of pearl millet and rice based gluten free upma for celiac disease patients. Annals of Agri Bio Research, 20(1), 143–144.Google Scholar
  59. Jukanti, A. K., Gaur, P. M., Gowda, C. L. L., & Chibbar, R. N. (2012). Nutritional quality and health benefits of chickpea (Cicer arietinum L.): a review. British Journal of Nutrition, 108, S11–S26.PubMedCrossRefGoogle Scholar
  60. Kamath, M. V., & Belavady, B. (1980). Unavailable carbohydrates of commonly consumed Indian foods. Journal of the Science of Food and Agriculture, 31, 194–202.CrossRefGoogle Scholar
  61. Kampa, M., Alexaki, V.-I., Notas, G., Nifli, A. P., Nistikaki, A., Hatzoglou, A., et al. (2004). Antiproliferative and apoptotic effects of selective phenolic acids on T47D human breast cancer cells: potential mechanisms of action. Breast Cancer Research, 6, R63–R74.PubMedPubMedCentralCrossRefGoogle Scholar
  62. Khairwal, I. S., Ram, C., & Chhabra, A. K. (1990). Pearl millet seed production and technology (pp. 208). New Delhi: Manohar Publications.Google Scholar
  63. Khairwal, I. S., Rai, K. N., Diwakar, B., Sharma, Y. K., Rajpurohit, B. S., Nirwan, B., & Bhattacharjee, R. (2007). Pearl millet: crop management and seed production manual (pp. 104). Patancheru: ICRISAT.Google Scholar
  64. Khalil, J. K., & Sawaya, W. N. (1984). Mineral and vitamin contents of Saudi Arabian pearl millet flour and bread. Cereal Chemistry, 61(4), 301–304.Google Scholar
  65. Khetarpaul, N., & Chauhan, B. H. (1991). Effect of natural fermentation on phytate and polyphenolic content and in vitro digestibility of starch and protein in pearl millet (Pennisetum typhodeum). Journal of the Science of Food and Agriculture, 55, 189–195.CrossRefGoogle Scholar
  66. Kholová, J., Hash, C. T., Kakkera, A., Kočová, M., & Vadez, V. (2010a). Constitutive water-conserving mechanisms are correlated with the terminal drought tolerance of pearl millet [Pennisetum glaucum (L.) R. Br.]. Journal of Experimental Botany, 61(2), 369–377.PubMedPubMedCentralCrossRefGoogle Scholar
  67. Kholová, J., Hash, C. T., Lava Kumar, P., Yadav, R. S., Kočová, M., & Vadez, V. (2010b). Terminal drought-tolerant pearl millet (Pennisetum glaucum (L.) R. Br.) have high leaf ABA and limit transpiration at high vapor pressure deficit. Journal of Experimental Botany, 61, 1431–1441.PubMedPubMedCentralCrossRefGoogle Scholar
  68. Klopfenstein, C. F., & Hoseney, R. C. (1995). Nutritional properties of sorghum and the millets. In D. A. V. Dendy (Ed.), Sorghum and millets: chemistry and technology (pp. 125–168). St. Paul: American Association of Cereal Chemistry.Google Scholar
  69. Knuckles, B. E., Kuzmicky, D. D., & Betschart, A. A. (1985). Effect of phytate and partially hydrolysed phytate on in vitro protein digestibility. Journal of Food Science, 52, 1080–1082.CrossRefGoogle Scholar
  70. Kountche, B. A., Hash, C. T., Dodo, H., Laoualy, O., Sanogo, M. D., Timbeli, A., Vigouroux, Y., This, D., Nijkamp, R., & Haussmann, B. I. G. (2013). Development of a pearl millet Striga-resistant genepool: response to five cycles of recurrent selection under Striga-infested field conditions in West Africa. Field Crops Research, 154, 82–90.CrossRefGoogle Scholar
  71. Krishna, K. R. (2014). Agroecosystem: soils, climate, crops, nutrient dynamics and productivity pp 1–553. New Jersey: Apple Academic Press Inc.Google Scholar
  72. Kumar, A., & Chauhan, B. M. (1993). Effect of phytic acid on protein digestibility (in vitro) and HCl-extractability of minerals in pearl millet sprouts. Cereal Chemistry, 70(5), 504–506.Google Scholar
  73. Lai, C. C., & Varriano-Marston, E. (1980). Lipid content and fatty acid composition of free and bound lipids in pearl millets. Cereal Chemistry, 57(4), 271–274.Google Scholar
  74. Léder, I. (2004). Sorghum and millets: cultivated plants, primarily as food sources. In: G. Füleky (Ed.), Encyclopedia of life support systems (EOLSS). Oxford: EOLSS Publishers [http://www.eolss.net].Google Scholar
  75. Mahalakshmi, V., & Bidinger, F. R. (1985). Water stress and time of floral initiation in pearl millet. Journal of Agricultural Science, 105, 237–239.CrossRefGoogle Scholar
  76. Maiti, R. K., & Bisen, S. S. (1979). Pearl millet anatomy. patancheru, A.P. India: ICRISAT.Google Scholar
  77. Malleshi, N. G., & Desikachar, H. S. R. (1986). Studies on comparative malting characteristics of some tropical cereals millets. Journal of the Institute of Brewing, 92, 174–176.CrossRefGoogle Scholar
  78. Mani, U. V., Prabhu, B. M., Damle, S. S., & Mani, I. (1993). Glycemic index of some commonly consumed foods in Western India. Asia Pacific Journal of Clinical Nutrition, 2, 111–114.PubMedGoogle Scholar
  79. Marchais, L., & Tostain, S. (1993). Evaluation de la diversité génétique des Mils (Pennisetum glaucum, (L.) R. BR.) au moyen de marqueurs enzymatiques et relation entre formes sauvages et cultivées. In S. Hamon (Ed.) Le mil en Afrique diversité génetiqué et agrophysiologique: Potentialités et contraintes pour lamélioration génétique et lagriculture. Actes de la reunion thématique sur le mil (Pennisetum glaucum, L.), Montpellier du 24 au 26 novembre 1992.Google Scholar
  80. McDonough, C. M., Rooney, L. W., & Serna-Saldivar, S. O. (2000). The millets. In K. Kulp, & J. G. Ponte (Eds.), Handbook of cereal science and technology (pp. 177–202). New York,: Marcel Dekker Inc.Google Scholar
  81. Mula, R. P., Rai, K. N., & Yadav, S. K. (2010). Case study of adoption of a pearl millet variety in a non-target region. SAT eJournal, 8, 1–5.Google Scholar
  82. Murthy, M.V.R., Singh, P., Wani, S.P., Khairwal, I.S., & Srinivas K. (2007). Yield gap analysis of sorghum and pearl millet in India using simulation modelling. In Global Theme on Agroecosystems Report No. 37 (pp. 82). Patancheru: ICRISAT.Google Scholar
  83. Nagaraj, N., Basavaraj, G., Rao, P. P., & Bantilan, C. (2012). Future outlook and options for target crops: the sorghum and pearl millet economy of India. policy brief No. 15. Patancheru: ICRISAT.Google Scholar
  84. Nambiar, V. S., Dhaduk, J. J., Sareen, N., Shahu, T., & Desai, R. (2011). Potential functional implications of pearl millet (Pennisetum glaucum) in health and disease. Journal of Applied Pharmaceutical Sciences, 1(10), 62–67.Google Scholar
  85. Nardini, M., D'Aquino, M., Tomassi, G., Gentili, V., Di Felice, M., & Scaccini, C. (1995). Inhibition of human low density lipoprotein oxidation by caffeic acid and other hydroxycinnamic acid derivatives. Free Radical Biology & Medicine, 19, 541–552.CrossRefGoogle Scholar
  86. Ndjeunga, J., Umar, J., Ahmed, B., Aba, A., Ibro, A., Abdoulaye, A., & Gwadi, K. (2011). Adoption and impacts of modern sorghum and pearl millet varieties in Northern Nigeria. Working Paper Series no XXXX (pp. 1–81). Patancheru: ICRISAT.Google Scholar
  87. Nedumaran, S., Bantilan, M. C. S., Gupta, S. K., Irshad, A., & Davis, J. S. (2014). Potential welfare benefit of millets improvement research at ICRISAT: multi country-economic surplus model approach, Series Paper Number: 15. Hyderabad: ICRISAT.Google Scholar
  88. Nepolean, T., Gupta, S. K., Dwivedi, S. L., Bhattacharjee, R., Rai, K. N., & Hash, C. T. (2012). Genetic diversity in maintainer and restorer lines of pearl millet. Crop Science, 52, 2555–2563.CrossRefGoogle Scholar
  89. NFSM (National Food Security Mission), (2014). Status paper on coarse cereals (sorghum, pearl millet, finger millet, small millets, maize and barley). Ministry of Agriculture, Government of India.Google Scholar
  90. Nicou, R., & Charreau, C. (1985). Soil tillage and water conservation in semi-arid West Africa. In H. W. Ohm, & J. G. Magy (Eds.), Appropriate Technologies for farmers in semi-arid West Africa (pp. 9–32). West Lafayette: Purdue University.Google Scholar
  91. Oluwasemire, K. O., Stigter, C. J., Owomki, J. J., & Jagtop, S. S. (2002). Seasonal water use and crop productivity of millet-based cropping systems in the Nigerian Sudan Savannah near Kano. Agricultural Water Management, 56, 207–227.CrossRefGoogle Scholar
  92. Osman, M. A. (2011). Effect of traditional fermentation process on the nutrient and antinutrient contents of pearl millet during preparation of lohoh. Journal of Saudi Society of Agricultural Science, 10, 1–6.CrossRefGoogle Scholar
  93. Ouattara, B., Hien, V., & Lompo, F. (1999). Development of water management technologies for rainfed crops in Burkina Faso. In M. Pala, C. Studer, & M. Bielders (Eds.), Efficient soil water use: the key to sustainable crop production in the dry areas of West Asia and North and Sub-Saharan Africa (pp. 265–281). Patancheru: Aleppo/ICRISAT.Google Scholar
  94. Panaud, O. (2006). Foxtail millet. In K. Chittaranjan (Ed.), Cereals and millet (pp. 325–332). Berlin/Heidelberg: Springer.CrossRefGoogle Scholar
  95. Poonam (2002). Effect of acid and heat treatment on nutrient composition and shelf life of pearl millet (Pennisetum glaucum) flour, M.Sc. thesis (pp. 106). Hisar: CCS Haryana Agricultural University.Google Scholar
  96. Porteres, R. (1976). African cereals: eleusine, fonio, black fonio, teff, Brachiaria, Paspalum, Pennisetum and African rice. In J. Harlan, J. de Wet, A. Stemler (Eds.), Origins of african plant domestication (pp. 409–452). La Hague: Mouton Publishers.Google Scholar
  97. Raboy, V. (1990). The biochemistry and genetics of phytic acid synthesis. In D. J. Morre, W. Boss, & F. A. Loewus (Eds.), Inositol metabolism in plants (pp. 52–73). New York: Alan R Liss.Google Scholar
  98. Raboy, V. (1997). Accumulation and storage of phosphate and minerals. In B. A. Larkins, & I. K. Vasil (Eds.), Cellular and molecular biology of plant seed development (pp. 441–477). Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
  99. Ragaee, S., Abdel-Aal, E. M., & Noaman, M. (2006). Antioxidant activity and nutrient composition of selected cereals for food use. Food Chemistry, 98, 32–38.CrossRefGoogle Scholar
  100. Rai, K. N., Murty, D. S., Andrews, D. J., & Bramel-Cox, P. J. (1999). Genetic enhancement of pearl millet and sorghum for the semi-arid tropics of Asia and Africa. Genome, 42, 617–628.CrossRefGoogle Scholar
  101. Rai, K. N., Kulkarni, V. N., Thakur, R. P., Haussmann, B. I. G., & Mgonja, M. A. (2006). Pearl millet hybrid parents research: approaches and achievements. In C. L. L. Gowda, K. N. Rai, B. V. S. Reddy, & K. B. Saxena (Eds.), Hybrid parents research at ICRISAT (pp. 11–74). Patancheru: ICRISAT.Google Scholar
  102. Rai, K. N., Gowda, C. L. L., Reddy, B. V. S., & Sehgal, S. (2008). The potential of sorghum and pearl millet in alternative and health food uses. Comprehensive Reviews in Food Science and Food Safety, 7, 340–352.Google Scholar
  103. Rai, K. N., Govindaraj, M., & Rao, A. S. (2012). Genetic enhancement of grain iron and zinc content in pearl millet. Quality Assurance & Safety of Crops and Food, 4(3), 119–125.CrossRefGoogle Scholar
  104. Rai, K. N., Patil, H. T., Yadav, O. P., Govindaraj, M., Khairwal, I. S., Cherian, B., Rajpurohit, B. S., Rao, A. S., Shivade, H., & Kulkarni, M. P. (2014). Dhanashakti: A high-iron pearl millet variety. Indian Farming, 64(7), 32–34.Google Scholar
  105. Rao, S.R., Lal, B.B., Nath, B., Ghosh, S.S., & Lal, K. (1963). Excavations at Rangpur and other explorations in Gujarat. Bulletin of the Archaeological Survey of India, 18–19, 5–207.Google Scholar
  106. Reichert, R. D., Youngs, C. G., & Christensen, D. A. (1980). Polyphenols in Pennisetum millet. In J. H. Hulse (Ed.), Polyphenols in cereals and legumes (pp. 50–60). Ottawa: International Development Research Centre.Google Scholar
  107. Rekha (1997). Efficacy of processing techniques in the utilization of pearl millet for value added products, M.Sc. thesis (p. 125). Hisar: CCS Haryana Agricultural University.Google Scholar
  108. Rooney, L. W. (1978). Sorghum and pearl millet lipids. Cereal Chemistry, 55(5), 584–590.Google Scholar
  109. Rooney, L. W., & McDonough, C. M. (1987). Food quality and consumer acceptance of pearl millet. In J. R. Witcombe, & S. R. Beckerman (Eds.), Proceedings of the international pearl millet workshop (pp. 43–61). Patancheru: ICRISAT.Google Scholar
  110. Sankara Rao, D. S., & Deosthale, Y. G. (1983). Mineral composition, ionizable iron, and soluble zinc in malted grains of pearl millet and ragi. Food Chemistry, 11, 211–217.Google Scholar
  111. Sawaya, W. N., Khalil, J. K., & Safi, W. J. (1984). Nutritional quality of pearl millet flour and bread. Plant Foods for Human Nutrition, 34(2), 117–125.CrossRefGoogle Scholar
  112. Serraj, R., Hash, C. T., Rizvi, S. M. H., Sharma, A., Yadav, R. S., & Bidinger, F. R. (2005). Recent advances in marker-assisted selection for drought tolerance in pearl millet. Plant Protection Science, 8, 334–337.CrossRefGoogle Scholar
  113. Sharma, C. B., Goel, M., & Irshad, M. (1978). Myo-inositol hexaphosphate as a potential inhibitor of amylase. Phytochemistry, 17, 201–204.CrossRefGoogle Scholar
  114. Sharma, R., Upadhyaya, H. D., Manjunatha, S. V., Rai, K. N., Gupta, S. K., & Thakur, R. P. (2013). Pathogenic variation in the pearl millet blast pathogen Magnaporthe grisea and identification of resistance to diverse pathotypes. Plant Disease, 97(2), 189–195.CrossRefGoogle Scholar
  115. Singh, G. (2003). Development and nutritional evaluation of value added products from pearl millet (Pennisetum glaucum). Ph. D thesis. Hisar: CCS Haryana Agricultural University.Google Scholar
  116. Smalling, E. M. A., Stoorvogel, J. J., & Sindmeijer, P. N. (1993). Calculating soil nutrient balances in Africa at different scales: II. district scale. Fertilizer Research, 35, 237–250.CrossRefGoogle Scholar
  117. Sritharan, R., Potter, J. W., Anand Kumar, K., & Dangi, O. P. (2007). Crop rotation with forage pearl millet for control of root-lesion nematodes in on-farm trials with potato. Journal of New Seeds, 8(3), 51–61.CrossRefGoogle Scholar
  118. Stapf, O. & C.E. Hubbard, C.E. (1934). Pennisetum. In D. Prain (Ed.) The flora of tropical Africa Vol. 9. London: Crown Agents.Google Scholar
  119. Stroosnijder, L., & Hoogmoed, W. (2004). The contribution of soil & water conservation to carbon sequestration in semi-arid Africa. Bulletin Réseau Erosion, 23, 528–539.Google Scholar
  120. Sumathi, A., Ushakumari, S. R., & Malleshi, N. G. (2007). Physico-chemical characteristics, nutritional quality and shelf life of pearl millet based extrusion cooked supplementary foods. International Journal of Food Science and Nutrition, 58, 350–362.CrossRefGoogle Scholar
  121. Thorne, M. J., Thompson, L. U., & Jenkins, D. J. A. (1983). Factors affecting starch digestibility and glycaemic response with reference to legumes. American Journal of Clinical Nutrition, 38, 481–488.PubMedGoogle Scholar
  122. Timper, P., Brenneman, T. B., Hanna, W. W., & Wilson, J. P. (2007). Pearl millet as a rotation crop for peanut. Plant Health Progress. doi: 10.1094/PHP-2007-0202-02-RS.Google Scholar
  123. Tosh, S. M., & Yada, S. (2010). Dietary fibres in pulse seeds and fractions: characterization, functional attributes, and applications. Food Research International, 43, 450–460.CrossRefGoogle Scholar
  124. Vadez, V., Krishnamurthy, L., Kashiwagi, J., Kholová, J., Devi, J. M., Sharma, K. K., Bhatnagar-Mathur, P., Hoisington, D. A., Hash, C. T., Bidinger, F. R., & Keatinge, J. D. H. (2007). Exploiting the functionality of root systems for dry, saline, and nutrient deficient environments in a changing climate. ICRISAT and CGIAR 35th anniversary symposium ‘climate-proofing innovation for poverty reduction and food security’. Journal of SAT Agricultural Research, 4, 1–61.Google Scholar
  125. van Duivenbooden, N., Pala, M., Stuber, C., Bielders, C. L., & Beukes, D. J. (2000). Cropping systems and crop complementarity in dryland agriculture to increase soil water use efficiency: a review. Netherlands Journal of Agricultural Science, 48, 213–236.Google Scholar
  126. Varriano-Marston, E., & Hoseney, R. C. (1980). Note on mineral content and location in pearl millet. Cereal Chemistry, 57, 150.Google Scholar
  127. White, P. J., & Xing, Y. (1997). Antioxidants from cereals and legumes. In F. Shahidi (Ed.), Natural antioxidants: chemistry, health effects, and applications (pp. 25–63). Champaign: American Association of Cereal Chemistry Press.Google Scholar
  128. Wilson, J. P., Hess, D. E., Hanna, W. W., Kumar, K. A., & Gupta, S. C. (2004). Pennisetum glaucum subsp. monodii Accessions with Striga resistance in West Africa. Crop Protection, 23, 865–870.CrossRefGoogle Scholar
  129. Yadav, R. S., Hash, C. T., Bidinger, F. R., Cavan, G. P., & Howart, C. J. (2002). Quantitative trait loci associated with traits determining grain and stover yield in pearl millet under terminal drought-stress conditions. Theoretical and Applied Genetics, 104, 67–83.PubMedCrossRefGoogle Scholar
  130. Yadav, R. S., Hash, C. T., Bidinger, F. R., Devos, K. M., & Howarth, C. J. (2004). Genomic regions associated with grain yield and aspects of post-flowering drought tolerance in pearl millet across stress environments and testers background. Euphytica, 136, 265–277.CrossRefGoogle Scholar
  131. Yadav O.P., Rai K.N., Rajpurohit B.S., Hash C.T., Mahala R.S., Gupta S.K., Shetty H.S., Bishnoi H.R., Rathore M.S., Kumar A., Sehgal S., & Raghvani K.L. (2012). Twenty-five years of pearl millet improvement in India. In: All India Coordinated Pearl Millet Improvement Project (pp. 1–122), Jodhpur.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht and International Society for Plant Pathology 2016

Authors and Affiliations

  • A. K . Jukanti
    • 1
    Email author
  • C. L. Laxmipathi Gowda
    • 2
    • 3
  • K. N. Rai
    • 4
  • V. K. Manga
    • 1
  • R. K. Bhatt
    • 1
  1. 1.Central Arid Zone Research InstituteJodhpurIndia
  2. 2.ICRISATPatancheruIndia
  3. 3.GRSV Consulting ServicesMysuruIndia
  4. 4.International Crops Research Institute for the Semi-Arid TropicsPatancheruIndia

Personalised recommendations