Skip to main content

The socioeconomics of food crop production and climate change vulnerability: a global scale quantitative analysis of how grain crops are sensitive to drought


Many studies warn that climate change may undermine global food security. Much work on this topic focuses on modelling crop-weather interactions but these models do not generally account for the ways in which socio-economic factors influence how harvests are affected by weather. To address this gap, this paper uses a quantitative harvest vulnerability index based on annual soil moisture and grain production data as the dependent variable in a Linear Mixed Effects model with national scale socio-economic data as independent variables for the period 1990–2005. Results show that rice, wheat and maize production in middle income countries were especially vulnerable to droughts. By contrast, harvests in countries with higher investments in agriculture (e.g. higher amounts of fertilizer use) were less vulnerable to drought. In terms of differences between the world’s major grain crops, factors that made rice and wheat crops vulnerable to drought were quite consistent, while those of maize crops varied considerably depending on the type of region. This is likely due to the fact that maize is produced under very different conditions worldwide. One recommendation for reducing drought vulnerability risks is coordinated development and adaptation policies, including institutional support that enables farmers to take proactive action.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3


  1. Antwi-Agyei, P., Fraser, E. D. G., Dougill, A., Stringer, L., & Simelton, E. (2011). Mapping food system vulnerability to drought using rainfall, yield and socioeconomic data for Ghana. Applied Geography, 32, 324–334.

    Article  Google Scholar 

  2. Arnell, N. W. (1999). A simple water balance model for the simulation of streamflow over a large geographic domain. Journal of Hydrology, 217, 314–335. doi:10.1016/S0022-1694(99)00023-2.

    Article  Google Scholar 

  3. Beddington, J. (2009). Food, energy, water and the climate: A perfect storm of global events? Government Office for Science. Full text available at:

  4. Brooks, N., Adger, N. W., & Kelly, M. P. (2005). The determinants of vulnerability and adaptive capacity at the national level and the implications for adaptation. Global Environmental Change Part A, 15(2), 151–163.

    Article  Google Scholar 

  5. Challinor, A. J., Simelton, E. S., Fraser, E. D., Hemming, D., Collins, M. (2010). Increased crop failure due to climate change: assessing adaptation options using models and socio-economic data for wheat in China. Environmental Research Letters, 5, doi:10.1088/1748-9326/5/3/034012.

  6. Chen, C. C., McCarl, B., & Hill, H. (2002). Agricultural value of ENSO information under alternative phase definition. Climatic Change, 54, 305–325.

    Article  Google Scholar 

  7. Conway, D., Persechino, A., Ardoin-Bardin, S., Hamandawana, H., Dieulin, C., & Mahe, G. (2009). Rainfall and water resources variability in sub-Saharan Africa during the 20th century. Journal of Hydrometeorology, 10, 41–59. doi:10.1175/2008JHM1004.1.

    Article  Google Scholar 

  8. Conway, D., & Schipper L. E. F. (2011). Adaptation to climate change in Africa: Challenges and opportunities identified from Ethiopia. Global Environmental Change, 21, 227–237.

    Google Scholar 

  9. Corzo Perez, G. A., van Huijgevoort, M. H. J., Voß, F., & van Lanen, H. A. J. (2011). On the spatio-temporal analysis of hydrological droughts from global hydrological models. Hydrology and Earth System Sciences, 15, 2963–2978.

    Article  Google Scholar 

  10. Crawley, M. J. (2007). The R Book. Chichester: Wiley.

    Book  Google Scholar 

  11. Devereux, S. (2009). Why does famine persist in Africa? Food Security, 1, 25–35.

    Article  Google Scholar 

  12. Eakin, H. (2005). Institutional change, climate risk, and rural vulnerability: cases from Central Mexico. World Development, 33(11), 1923–1938.

    Article  Google Scholar 

  13. EarthTrends (2008). The environmental information portal. World Resources Institute.

  14. Ericksen, P. et al. (2011). Mapping hotspots of climate change and food insecurity in the global tropics. Copenhagen: CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS).

  15. Erigayama, N., Smakhtin, V., & Gamage, N. (2009). Mapping drought patterns and impacts: a global perspective. Colombo: International Water Management Institute.

    Google Scholar 

  16. FAO (2003). Trade reforms and food security. Conceptualizing the linkages, Commodity Policies and Projections Service, Commodities and Trade Division. Rome, Italy. 296pp.

  17. FAO (2008). FAOSTAT Online database. Food and Agriculture Organization of the United Nations.

  18. Fazey, I., Gamarra, J. G. P., Fischer, J., Reed, M. S., Stringer, L. C., & Christie, M. (2010). Adaptation strategies for reducing vulnerability to future environmental change. Frontiers in Ecology and the Environment, 8(8), 414–422. doi:10.1890/080215.

    Article  Google Scholar 

  19. Foley, J. A., et al. (2011). Solutions for a cultivated planet. Nature. doi:10.1038/nature10452.

  20. Fraser, E. (2007). Travelling in antique lands: Studying past famines to understand present vulnerabilities to climate change. Climate Change, 83, 495–514.

    Article  Google Scholar 

  21. Fraser, E. D. G., Rimas, A. (2011). The psychology of food riots. Foreign Affairs, January 30,

  22. Fraser, E. D. G., & Stringer, L. C. (2009). Explaining agricultural collapse: macro-forces, micro-crises and the emergence of land use vulnerability in southern Romania. Global Environmental Change, 19(1), 45–53.

    Article  Google Scholar 

  23. Fraser, E. D. G., et al. (2008). Quantifying socioeconomic characteristics of drought-sensitive regions: evidence from Chinese provincial agricultural data. Comptes Rendus Geoscience, 340(9–10), 679–688.

    Article  Google Scholar 

  24. Fraser, E. D. G, Dougill, A. J., Hubacek, K., Quinn, C. H., Sendzimir, J., Termansen, M. (2011). Assessing vulnerability, resilience and adaptive capacity to climate change in arid/semi-arid social ecological systems. Ecology and Society 16(3), Art. 3.

  25. Gbetibouo, G., Ringler, C. (2009). Mapping South African farming sector vulnerability to climate change and variability: A subnational assessment. IFPRI Discussion Paper 885. International Food Policy Research Institute Washington, DC.

  26. Gosling, S. N., & Arnell, N. W. (2011). Simulating current global river runoff with a global hydrological model: model revisions, validation, and sensitivity analysis. Hydrological Processes, 25, 1129–1145.

    Article  Google Scholar 

  27. Gosling, S. N., Bretherton, D., Haines, K., Arnell, N. W. (2010). Global hydrology modelling and uncertainty: running multiple ensembles with a campus grid. Philosophical Transactions of the Royal Society A, 368, 4005–4021. doi: 10.1098/rsta.2010.0164.

    Google Scholar 

  28. Haddeland, I., et al. (2011). Multimodel estimate of the global terrestrial water balance: setup and first results. Journal of Hydrometeorology, 12, 869–884.

    Article  Google Scholar 

  29. Hafner, S. (2003). Trends in maize, rice, and wheat yields for 188 nations over the past 40 years: a prevalence of linear growth. Agriculture, Ecosystems and Environment, 97, 275–283.

    Article  Google Scholar 

  30. Hazell, P., & Wood, S. (2007). Drivers of change in global agriculture. Philosophical Transactions of the Royal Society B. doi:10.1098/rstb.2007.2166.

  31. Hollinger, S. E., & Isard, S. A. (1994). A soil moisture climatology of Illinois. Journal of Climate, 7, 822–833.

    Article  Google Scholar 

  32. IPCC (2001). Glossary, Fourth Assessment Report, Working Group 2. Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press.

  33. IPCC. (2007). Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.

    Google Scholar 

  34. Kottek, M., Grieser, J., Beck, C., Rudolf, B., & Rubel, F. (2006). World Map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift, 15(3), 259–263. doi:10.1127/0941-2948/2006/0130.

    Article  Google Scholar 

  35. Leff, B., Ramankutty, N., Foley, J. A. (2004). Geographic distribution of major crops across the world. Global Biogeochemical Cycles 18, GB 1009.

  36. Li, Y. P., Ye, W., Wang, M., & Yan, X. D. (2009). Climate change and drought: a risk assessment of crop-yield impacts. Climate Research, 39, 31–46.

    Article  CAS  Google Scholar 

  37. Lobell, B. D., & Field, C. B. (2007). Global scale climate-crop yield relationships and the impacts of recent warming. Environmental Research Letters, 2, 014002.

    Article  Google Scholar 

  38. McMahon, T. A., Peel, M. C., Vogel, R. M., & Pegram, G. G. S. (2007). Global streamflows—Part 3: Country and climate zone characteristics. Journal of Hydrology, 347, 272–291.

    Article  Google Scholar 

  39. Mishra, A. K., & Singh, V. P. (2010). A review of drought concepts. Journal of Hydrology, 391(1–2), 202–216.

    Article  Google Scholar 

  40. Nelson, G., et al. (2010). Food security, farming, and climate change to 2050: Scenarios, results, policy options. IFPRI. Washington DC. 155 pp

  41. Nijssen, B., Schnur, R., & Lettenmaier, D. P. (2001). Global retrospective estimation of soil moisture using the variable infiltration capacity land surface model, 1980–93. Journal of Climate, 14, 1790–1808.

    Article  Google Scholar 

  42. O’Brien, K., & Leichenko, R. M. (2000). Double exposure: assessing the impacts of climate change within the context of economic globalization. Global Environmental Change, 10, 221–232.

    Article  Google Scholar 

  43. OECD-FAO (2009). OECD-FAO Agricultural outlook Highlights No1 Feb 2009. OECD/FAO.

  44. Ohno, K. (2009). Avoiding the middle-income trap: renovating industrial policy formulatoin in Vietnam. ASEAN Economic Bulletin, 26(1), 25–43.

    Article  Google Scholar 

  45. Pandey, V. P., Babel, M. S., Shrestha, S., & Kazama, F. (2011). A framework to assess adaptive capacity of the water resources system in Nepalese river basins. Ecological Indicators, 11(2), 480–488.

    Article  Google Scholar 

  46. Patt, A., & Gwata, C. (2002). Effective seasonal climate forecast applications: examining constraints for subsistence farmers in Zimbabwe. Global Environmental Change, 12(3), 185–195.

    Article  Google Scholar 

  47. Rudel, T. K., et al. (2009). Agricultural intensification and changes in cultivated areas, 1970–2005. Proceedings of the National Academy of Sciences of the United States of America, 106(49), 20675–20680. doi:10.1073/pnas.0812540106.

    PubMed  Article  CAS  Google Scholar 

  48. Schneider, T., & Neumaier, A. (2001). Algorithm 808: ARfit—A Matlab package for the estimation of parameters and eigenmodes of multivariate autoregressive models. ACM Transactions on Mathematical Software, 27(1), 58–65.

    Article  Google Scholar 

  49. Siebert, S., Doll, P., Hoogeveen, J., Faures, J. M., Frenken, K., & Feick, S. (2005). Development and validation of the global map of irrigation areas. Hydrology and Earth System Sciences, 9, 535–547.

    Article  Google Scholar 

  50. Sheffield, J., Andreadis, K. M., Wood, E. F., & Lettenmaier, D. P. (2009). Global and continental drought in the second half of the Twentieth Century: severity-area-duration analysis and temporal variability of large-scale events. Journal of Climate, 22, 1962–1981.

    Article  Google Scholar 

  51. Simelton, E., Fraser, E. D. G., Termansen, M., Forster, P. M., & Dougill, A. J. (2009). Typologies of crop-drought vulnerability: an empirical analysis of the socio-economic factors that influence the sensitivity and resilience to drought of three major food crops in China (1961–2001). Environmental Science and Policy, 12(4), 438–452.

    Article  Google Scholar 

  52. Simelton, E. (2011). Food self-sufficiency and natural hazards in China. Food Security, 3(1), 35–52.

    Article  Google Scholar 

  53. Stringer, L. C., Dyer, J. C., Reed, M. S., Dougill, A. J., Twyman, C., & Mkwanbisi, D. (2009). Adaptations to climate change, drought and desertification: local insights to enhance policy in southern Africa. Enironmental Science and Policy, 12, 748–765.

    Article  Google Scholar 

  54. The Economist (2009). The Economist Intelligence Unit’s Index of Democracy 2008.

  55. Thenkabail, P. S., et al. (2008). A Global Irrigated Area Map (GIAM) Using remote sensing at the end of the last millennium. Colombi. Sri Lanka: International Water Management Institute. 63 pp.

  56. The World Bank Group (2008). World Development Indicators Online database.

  57. Thorne, R. (2011). Uncertainty in the impacts of projected climate change on the hydrology of a subarctic environment: Liard River Basin. Hydrological and Earth System Sciences, 15, 1483–1492.

    Article  Google Scholar 

  58. Government, U. K. (2011). Global food and farming futures. London: Foresight Government of the United Kingdom.

    Google Scholar 

  59. USDA (2004). Ukraine: Average harvest prospects for winter grains, production estimates and crop assessment division, foreign agricultural service. United States Department of Agriculture.

  60. Verchot, L. V., et al. (2007). Climate change: linking adaptation and mitigation through agroforestry. Mitigation and Adaptation Strategies for Global Change. doi:10.1007/s11027-007-9105-6.

  61. Wagner, W., Scipal, K., Pathe, C., Gerten, D., Lucht, W., Rudolf, B. (2003). Evaluation of the agreement between first global remotely sensed soil moisture data with model and precipitation data, Journal of Geophysical Research, 108(D19), 4611, doi:10.1029/2003JD003663.

  62. World Bank (2009). Country classification 2008.

  63. Xu, H., Taylor, R. G., Kingston, D. G., Jiang, T., Thompson, J. R., & Todd, M. C. (2010). Hydrological modeling of River Xiangxi using SWAT2005: a comparison of model parameterizations using station and gridded meteorological observations. Quaternary International, 226, 54–59.

    Article  Google Scholar 

Download references


We would like to thank Jami Dixon for collecting data, and Esben Almquist and Alexander Walther for their Matlab scripts. This research was funded by grants from: the Natural Environment Research Council (NERC) under the QUEST programme (grant number NE/E001890/1); the Rural Economy and Land Use Programme which is a collaboration between the Economic and Social Research Council (ESRC), the Biotechnology and Biological Sciences Research Council (BBSRC); and the Centre for Climate Change Economic and Policy, which is funded by the Economics and Social Research Council. We are grateful to two anonymous reviewers for their constructive comments.

Author information



Corresponding author

Correspondence to Elisabeth Simelton.

Electronic supplementary material

Below is the link to the electronic supplementary material.


(DOC 61 kb)


 (DOC 50 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Simelton, E., Fraser, E.D.G., Termansen, M. et al. The socioeconomics of food crop production and climate change vulnerability: a global scale quantitative analysis of how grain crops are sensitive to drought. Food Sec. 4, 163–179 (2012).

Download citation


  • Drought vulnerability index
  • Crop failure
  • Soil moisture
  • Food security
  • Transition economies
  • Linear model
  • Adaptive capacity