Skip to main content
Log in

Advanced test environment for automated attitude control testing of fully integrated CubeSats on system level

  • Original Paper
  • Published:
CEAS Space Journal Aims and scope Submit manuscript

Abstract

As CubeSats are increasingly used for commercial purposes such as Earth observation, communication, and scientific research, it is essential to improve their reliability. Recent studies show that primarily insufficient functional testing on system level led to low success rates in former missions. Additionally, high-precision attitude control becomes more important for small satellites, especially in formation missions with multiple cooperating satellites. This paper introduces a unique test facility that allows for automated calibration and verification of the attitude determination and control system of fully integrated CubeSats with high accuracy. Calibration and functional testing at the system level are crucial for ensuring accurate in-orbit performance and detecting failures that may be caused by interfaces or interference with other subsystems. Testing fully integrated satellites prevents mission loss and significantly increases reliability. The automation of calibration and testing procedures improves the overall system quality, while simultaneously reducing the required verification effort, to meet the demands of the growing number of CubeSat missions. This paper presents the results of successfully performed automated system-level tests and provides a comprehensive outlook on verifying cooperative attitude control in multi-satellite formations. This contribution is significant for universities, companies, and agencies by providing an example concept and implementation of automated attitude control testing on system level with extension toward testing cooperating satellites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Availability of data and materials

Please contact the corresponding author for any data and material requests.

References

  1. California Polytechnic State University: CubeSat design specification Rev. 13, The CubeSat Program. http://www.cubesat.org/s/cds_rev13_final2.pdf. Accessed 25 Oct 2019

  2. Heidt, H., Puig-Suari, J., Moore, A., Nakasuka, S., Twiggs, R.: CubeSat: A new generation of picosatellite for education and industry low-cost space experimentation. In: 14th Annual AIAA/USU Small Satellite Conference, Logan, UT (2000)

  3. Kulu, E.: Nanosats Database - Launches by institutions. https://www.nanosats.eu. Accessed 15 Sept 2022

  4. National Academies of Sciences, Engineering, and Medicine: Achieving Science with CubeSats: Thinking Inside the Box. The National Academies Press, Washington, D.C., USA (2016). https://doi.org/10.17226/23503. https://www.nap.edu/catalog/23503/achieving-science-with-cubesats-thinking-inside-the-box

  5. Planet Labs: PlanetScope Constellation (2023). https://developers.planet.com/docs/data/planetscope/ Accessed 19 June 2023

  6. Alfriend, K., Vadali, S., Gurfil, P., How, J., Breger, L.: Spacecraft Formation Flying: Dynamics, Control and Navigation. Butterworth-Heinemann, UK (2010). https://doi.org/10.1016/C2009-0-17485-8

  7. Schilling, K., Aumann, A., Motroniuk, I., Mammadov, I., Garbe, D., Ruf, O., Dombrovski, V., Hladký, M., Nüchter, A.: TOM - A Pico-Satellite Formation For 3D Earth Observation. In: Small Satellites Systems and Services - The 4S Symposium. Sorrento, Italy (2018)

  8. Romero-Calvo, A., Biggs, J., Topputo, F.: Attitude Control for the LUMIO CubeSat in Deep Space. In: 70th International Astronautical Congress (IAC), Washington D.C., USA (2019)

  9. Schilling, K., Tzschichholz, T., Motroniuk, I., Aumann, A., Mammadov, I., Ruf, O., Schmidt, C., Appel, N., Kleinschrodt, A., Montenegro, S., Nüchter, A.: TOM: A Formation for Photogrammetric Earth Observation by Three CubeSats. In: 4th IAA Conference on University Satellite Missions. Rome, Italy (2017)

  10. Haber, R., Garbe, D., Busch, S., Schilling, K.: QUBE - A CubeSat for Quantum Key Distribution Experiments. In: 32nd Annual Small Satellite Conference, Logan, UT, USA (2018)

  11. Swartwout, M.: CubeSat Database. https://sites.google.com/a/slu.edu/swartwout/cubesat-database. Accessed 15 Sept 2022

  12. Swartwout, M.: The first one hundred CubeSats: a statistical look. J. Small Satell. 2(2), 213–233 (2013)

    Google Scholar 

  13. Kim, B., Velenis, E., Kriengsiri, P., Tsiotras, P.: Designing a low-cost spacecraft simulator. IEEE Control Syst. Mag. 23(4), 26–37 (2003). https://doi.org/10.1109/MCS.2003.1213601

    Article  Google Scholar 

  14. Prado, J., Bisiacchi, G., Reyes, L., Vicente, E., Contreras, F., Mesinas, M.: Three-axis air-bearing based platform for small satellite attitude determination and control simulation. J. Appl. Res. Technol. (2005). https://doi.org/10.22201/icat.16656423.2005.3.03.563

    Article  Google Scholar 

  15. Li, J., Post, M., Wright, T., Lee, R.: Design of attitude control systems for CubeSat-class nanosatellite. J. Control Sci. Eng. 28, 98 (2013)

    MATH  Google Scholar 

  16. Long, F.W.: Design and testing of a nanosatellite simulator reaction wheel attitude control system. Master’s thesis, Utah State University (2014). https://digitalcommons.usu.edu/gradreports/448

  17. Bernstein, D.S., McClamroch, N.H., Bloch, A.M.: Development of air spindle and triaxial air bearing testbeds for spacecraft dynamics and control experiments. Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148) 5, 3967–39725, Arlington, VA, USA (2001)

  18. Rasmussen, R.E., Agrawal, B.N.: Air bearing based satellite attitude dynamics simulator for control software research and development. In: Proceedings of SPIE: Technologies for Synthetic Environments, vol. Vol. 4366. Calhoun, Orlando, FL, USA (2001). https://calhoun.nps.edu/handle/10945/34544

  19. Romano, M.: On-the-ground experiments of autonomous spacecraft proximity-navigation using computer vision and jet actuators. In: Proceedings, 2005 IEEE/ASME International Conference on Advanced Intelligent Mechatronics., pp. 1011–1016, Monterey, CA, USA (2005). https://doi.org/10.1109/AIM.2005.1511142

  20. Chen, Y., Huang, Y., Chen, X.: Development of simulation testbed for autonomous on-orbit servicing technology. In: 2011 IEEE 5th International Conference on Robotics, Automation and Mechatronics (RAM), pp. 148–153, Qingdao, China (2011). https://doi.org/10.1109/RAMECH.2011.6070472

  21. Boynton, R.: Using a spherical air bearing to simulate weightlessness. In: 55th Annual Conference of the Society of Allied Weight Engineers, Inc. Atlanta, GA, USA (1996)

  22. Looney, M.: The basics of mems imu/gyroscope alignment. Analog Dialogue 49, 1–6 (2015)

    Google Scholar 

  23. Boge, T., Wimmer, T., Ma, O., Zebenay, M.: Epos - a robotics-based hardware-in-the-loop simulator for simulating satellite RvD operations. In: i-SAIRAS. Sapporo, Japan (2010)

  24. Benninghoff, H., Rems, F., Risse, E.-A., Mietner, C.: European proximity operations simulator 20 (epos) - a robotic-based rendezvous and docking simulator. J. Large-Scale Res. Facil. JLSRF 29, 36 (2017)

    Google Scholar 

  25. Suatoni, M., Mollinedo, L., Barrena, V., Colmenarejo, P., Voirin, T.: Use of cots robotics for on-ground validation of space GNC systems: Platform dynamic test bench. In: i-SAIRAS. Turin, Italy (2012)

  26. Dombrovski, V., Ruf, O., Schilling, K.: Uniform, Multi-Level Protocol For Ground And Space Segment Operations And Testing. In: Small Satellite Systems and Services - The 4S Symposium. Sorrento, Italy (2018)

  27. Dombrovski, V.: Software framework to support operations of nanosatellite formations. Doctoral thesis, Universität Würzburg (2022). https://doi.org/10.25972/OPUS-24931

  28. Searcy, J.D., Pernicka, H.J.: Magnetometer-only attitude determination using novel two-step Kalman filter approach. J. Guid., Control, Dyn. 35(6), 1693–1701 (2012). https://doi.org/10.2514/1.57344

    Article  Google Scholar 

  29. Lee, D., Vukovich, G., Lee, R.: Robust adaptive unscented Kalman filter for spacecraft attitude estimation using quaternion measurements. J. Aerosp. Eng. 30(4), 04017009 (2017). https://doi.org/10.1061/(ASCE)AS.1943-5525.0000718

    Article  Google Scholar 

  30. Bangert, P., Busch, S., Schilling, K.: Performance Characteristics of the UWE-3 Miniature Attitude Determination and Control System. In: Small Satellites, Systems and Services - The 4S Symposium. Majorca, Spain (2014)

  31. Chmiela, K.: Development and testing of a high precision sun sensor for the UWE-4 satellite. Master thesis, University of Würzburg (2018)

  32. Markley, F.L., Crassidis, J.L.: Fundamentals of Spacecraft Attitude Determination and Control. Springer, New York, NY (2014). https://doi.org/10.1007/978-1-4939-0802-8

    Book  MATH  Google Scholar 

  33. Matt, J.: Absolute Orientation - Horn’s Method (02.09.2015). https://www.mathworks.com/matlabcentral/fileexchange/26186-absolute-orientation-horn-s-method. Accessed 14 Sept 2022

  34. Crassidis, J.L., Andrews, S.F., Markley, F.L., Ha, K.: Contingency designs for attitude determination of TRMM. In: Flight Mechanics/Estimation Theory Symposium, pp. 419–433. Greenbelt, MD, USA (1995)

  35. Hanning, T.: High Precision Camera Calibration. Springer, Wiesbaden, Germany (2011)

    Book  Google Scholar 

  36. Treibitz, T., Schechner, Y., Kunz, C., Singh, H.: Flat refractive geometry. IEEE Trans. Pattern Anal. Mach. Intell. 34(1), 51–65 (2012). https://doi.org/10.1109/TPAMI.2011.105

    Article  Google Scholar 

  37. The MathWorks, Inc.: fminsearch (2022). https://de.mathworks.com/help/matlab/ref/fminsearch.html. Accessed 14 Sept 2022

  38. Kempf, F., Cruz, U.S., Scharnagl, J., Schilling, K.: Networked and distributed cooperative attitude control of fractionated small satellites. In: Proceedings of the 69th International Astronautical Congress. IAF, Bremen, Germany (2018)

  39. Dauner, J., Elsner, L., Ruf, O., Borrmann, D., Scharnagl, J., Schilling, K.: Visual Servoing for Coordinated Precise Attitude Control in the TOM Small Satellite Formation. Acta Astronaut. 202, 760–771 (2023). https://doi.org/10.1016/j.actaastro.2022.10.003

  40. Dauner, J., Elsner, L., Ruf, O., Borrmann, D., Scharnagl, J., Schilling, K.: Visual Servoing for Coordinated Precise Attitude Control in the TOM Small Satellite Formation. In: Proceedings of the 72nd International Astronautical Congress. IAF, Dubai, United Arab Emirates (2021)

  41. Kramer, A., Bangert, P., Schilling, K.: UWE-4: First electric propulsion on a 1U CubeSat-in-orbit experiments and characterization. Aerospace (2020). https://doi.org/10.3390/aerospace7070098

    Article  Google Scholar 

  42. Kramer, A., Schilling, K.: First demonstration of collision avoidance and orbit control for pico-satellites - UWE-4. Acta Astronaut. 185, 244–256 (2021). https://doi.org/10.1016/j.actaastro.2021.04.010

    Article  Google Scholar 

  43. Kramer, A., Bangert, P., Schilling, K.: Hybrid attitude control on-board UWE-4 using magnetorquers and the electric propulsion system NanoFEEP. In: 33rd Annual AIAA/USU Conference on Small Satellites. Logan, UT, USA (2019)

  44. Schilling, K., Bangert, P., Busch, S., Dombrovski, S., Freimann, A., Kleinschrodt, A., Kramer, A., Nogoueira, T., Ris, D., Scharnagl, J., Tzschichholz, T.: NetSat: A Four Pico/Nano-Satellite Mission For Demonstration Of Autonomous Formation Flying. In: 66th International Astronautical Congress. IAF, Jerusalem, Israel (2015)

  45. Schilling, K.: NetSat - Erste Satellitenformation in 3D, Luft- und Raumfahrt 1/2021, 16–19 (2021)

  46. Scharnagl, J., Kempf, F., Dombrovski, S., Schilling;, K.: NetSat - Challenges of a Formation Composed of 4 Nano-Satellites. In: Proceedings of the 72nd International Astronautical Congress. IAF, Dubai, United Arab Emirates (2021)

  47. Knips, L., Auer, M., Baliuka, A., Bayraktar, Ö., Freiwang, P., Grünefeld, M., Haber, R., Lemke, N., Marquardt, C., Moll, F., Pudelko, J., Rödiger, B., Schilling, K., Schmidt, C., Weinfurter, H.: QUBE – Towards Quantum Key Distribution with Small Satellites. In: Quantum 2.0. Technical digest series / Optica Publishing Group, pp. 3–6. Optica Publishing Group, Washington, D.C., USA (2022). https://doi.org/10.1364/QUANTUM.2022.QTh3A.6

  48. Schilling, K., Nüchter, A.: Formations of small satellites to realize sensor networks for earth observation. In: 24th IMEKO TC4 International Symposium. Palermo, Italy (2020)

  49. Schilling, K.: Small satellite formations: Challenges in navigation and its application potential. In: Pešechonov, V.G. (ed.) 28th Saint Petersburg International Conference on Integrated Navigation Systems. IEEE, Saint Petersburg, Russia (2021). https://doi.org/10.23919/ICINS43216.2021.9470841

Download references

Acknowledgements

The authors gratefully thank all the collaborators who contributed to the projects mentioned in the funding section.

Funding

The authors acknowledge the support from European Research Council (ERC) Advanced Grant NetSat under the Grant Agreement No. 320377 and the Free State of Bavaria within the research project ForTe (In-Orbit Formationstests). Telematics Earth Observation Mission (TOM), supported by the Bavarian Ministry of Economics and the Regional Leaders Summit (RLS) for the cooperation in the Telematics International Mission (TIM). QUBE, supported by the German Federal Ministry of Education and Research (BMBF) within the IKT 2020 program. UWE-4, supported by the German national space agency DLR (Raumfahrt-Agentur des Deutschen Zentrums für Luft-und Raumfahrt e.V.) by funding from the Federal Ministry of Economics and Technology by approval from German Parliament with reference 50 RU 1501. Space Factory 4.0 project funded by German Aerospace Center (DLR) and the Federal Ministry for Economic Affairs and Energy (BMWi) with reference 50RP1712

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Ruf.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruf, O., von Arnim, M., Kempf, F. et al. Advanced test environment for automated attitude control testing of fully integrated CubeSats on system level. CEAS Space J (2023). https://doi.org/10.1007/s12567-023-00523-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12567-023-00523-x

Keywords

Navigation