Skip to main content
Log in

ATON (Autonomous Terrain-based Optical Navigation) for exploration missions: recent flight test results

  • Original Paper
  • Published:
CEAS Space Journal Aims and scope Submit manuscript

Abstract

Since 2010 the German Aerospace Center is working on the project Autonomous Terrain-based Optical Navigation (ATON). Its objective is the development of technologies which allow autonomous navigation of spacecraft in orbit around and during landing on celestial bodies like the Moon, planets, asteroids and comets. The project developed different image processing techniques and optical navigation methods as well as sensor data fusion. The setup—which is applicable to many exploration missions—consists of an inertial measurement unit, a laser altimeter, a star tracker and one or multiple navigation cameras. In the past years, several milestones have been achieved. It started with the setup of a simulation environment including the detailed simulation of camera images. This was continued by hardware-in-the-loop tests in the Testbed for Robotic Optical Navigation (TRON) where images were generated by real cameras in a simulated downscaled lunar landing scene. Data were recorded in helicopter flight tests and post-processed in real-time to increase maturity of the algorithms and to optimize the software. Recently, two more milestones have been achieved. In late 2016, the whole navigation system setup was flying on an unmanned helicopter while processing all sensor information onboard in real time. For the latest milestone the navigation system was tested in closed-loop on the unmanned helicopter. For that purpose the ATON navigation system provided the navigation state for the guidance and control of the unmanned helicopter replacing the GPS-based standard navigation system. The paper will give an introduction to the ATON project and its concept. The methods and algorithms of ATON are briefly described. The flight test results of the latest two milestones are presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Ammann, N., Andert, F.: Visual navigation for autonomous, precise and safe landing on celestial bodies using unscented kalman filtering. In: 2017 IEEE Aerospace Conference, pp. 1–12 (2017)

  2. Andert, F., Ammann, N., Maass, B.: Lidar-aided camera feature tracking and visual SLAM for spacecraft low-orbit navigation and planetary landing. In: CEAS EuroGNC Conference (2015)

  3. Andert, F., Ammann, N., Krause, S., Lorenz, S., Bratanov, D., Mejías, L.: Optical-aided aircraft navigation using decoupled visual SLAM with range sensor augmentation. J. Intell. Robot. Syst. 88, 547–565 (2017)

    Article  Google Scholar 

  4. Benninghoff, H., Borchers, K., Börner, A., Dumke, M., Fey, G., Gerndt, A., Höflinger, K., Langwald, J., Lüdtke, D., Maibaum, O., Peng, T., Schwenk, K., Weps, B., Westerdorff, K.: OBC-NG Concept and Implementation. Technical report, Deutsches Zentrum für Luft- und Raumfahrt (DLR) (2016)

  5. Besl, P.J., McKay, N.D.: A method for registration of 3-d shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 239–256 (1992)

    Article  Google Scholar 

  6. Chen, Y., Medioni, G.: Object modeling by registration of multiple range images. In: Proceedings. 1991 IEEE International Conference on Robotics and Automation, vol. 3, pp. 2724–2729 (1991)

  7. Franz, T., Lüdtke, D., Maibaum, O., Gerndt, A.: Model-base software engineering for an optical navigation system for spacecraft. CEAS Space J. (2017) (submitted)

  8. Geller, D.K., Christensen, D.P.: Linear covariance analysis for powered lunar descent and landing. J. Spacecr. Rockets 46(6), 54–565 (2009)

    Article  Google Scholar 

  9. Haruyama, J., Matsunaga, T., Ohtake, M., Morota, T., Honda, C., Yokota, Y., Torii, M., Ogawa, Y.: Global lunar-surface mapping experiment using the lunar imager/spectrometer on selene. Earth Planets Space 60(4), 243–255 (2008)

    Article  Google Scholar 

  10. Hirschmüller, H.: Accurate and efficient stereo processing by semi-global matching and mutual information. In: CVPR 2005, vol. 2. IEEE, pp. 807–814 (2005)

  11. Hirschmüller, H.: Stereo processing by semi-global matching and mutual information. IEEE Trans. Pattern Anal. Mach. Intell. 30(2), 328–341 (2008)

    Article  Google Scholar 

  12. Hirschmüller, H., Bucher, T.: Evaluation of digital surface models by semi-global matching. In: DGPF 2010 (2010)

  13. Ho, T., Baturkin, V., Grimm, C., Grundmann, J., Hobbie, C., Ksenik, E., Lange, C., Sasaki, K., Schlotterer, M., Termtanasombat, N., Talapina, M., Wejmo, E., Witte, L., Wrasmann, M., Wübbels, G., Rößler, J., Ziach, C., Findlay, R., Biele, J., Krause, C., Ulamec, S., Lange, M., Mierheim, O., Lichtenheldt, R., Maier, M., Reill, J., Sedlmayr, H.-J., Bousquet, P.-W., Bellion, A., Bompis, O., Cenac-Morthe, C., Deleuze, M., Fredon, S., Jurado, E., Canalias, E., Jaumann, R., Bibring, J., Glassmeier, K.H., Hercik, D., Grott, M., Celotti, L., Cordero, F., Hendrikse, J., Okada, T.: Mascot—the mobile asteroid surface scout onboard the hayabusa2 mission. Space Sci. Rev. (2016)

  14. Kato, M., Sasaki, S., Takizawa, Y.: The kaguya mission overview. Space Sci. Rev. 154(1), 3–19 (2010)

    Article  Google Scholar 

  15. Kaufmann, H., Lingenauber, M., Bodenmüller, T., Suppa, M.: Shadow-based matching for precise and robust absolute self-localization during lunar landings. In: 2015 IEEE Aerospace Conference Proceedings, pp. 1–13 (2015)

  16. Krüger, H., Theil, S.: Tron—hardware-in-the-loop test facility for lunar descent and landing optical navigation. In: IFAC-ACA 2010 Automatic Control in Aerospace (2010)

  17. Krüger, H., Theil, S., Sagliano, M., Hartkopf, S.: On-ground testing optical navigation systems for exploration missions. In: 9th International ESA Conference on Guidance, Navigation and Control Systems (2014)

  18. Lingenauber, M., Bodenmüller, T., Bartelsen, J., Maass, B., Krüger, H., Paproth, C., Kuß, S., Suppa, M.: Rapid modeling of high resolution moon-like terrain models for testing of optical localization methods. In: ASTRA 2013—12th Symposium on Advanced Space Technologies in Robotics and Automation. European Space Agency (2013)

  19. Lockner, E., Oehlschlägel, T., Theil, S., Knauer, M., Tietjen, J., Büskens, C.: Real-time capable trajectory synthesis via multivariate interpolation methods for a moon landing manoeuvre. CEAS Space J. 6(2), 107–118 (2014)

    Article  Google Scholar 

  20. Lucas, B.D., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: International Joint Conference on Artificial Intelligence, pp. 674–679 (1981)

  21. Maass, B.: Robust approximation of image illumination direction in a segmentation-based crater detection algorithm for spacecraft navigation. CEAS Space J. (2016)

  22. Maass, B., Krüger, H., Theil, S.: An edge-free, scale- pose- and illumination-invariant approach to crater detection for spacecraft navigation. In: 7th International Symposium on Image and Signal Processing and Analysis, pp. 603–608 (2011)

  23. Maibaum, O., Lüdtke, D., Gerndt, A.: Tasking framework: parallelization of computations in onboard control systems. In: ITG/GI Fachgruppentreffen Betriebssysteme (2013)

  24. Oehlschlägel, T., Theil, S., Krüger, H., Knauer, M., Tietjen, J., Büskens, C.: Optimal guidance and control of lunar landers with non-throttable main engine. In: Holzapfel, F., Theil, S. (eds.) Selected Papers of the 1st CEAS Specialist Conference on Guidance, Navigation and Control, Advances in Aerospace Guidance, Navigation and Control, pp. 451–463. Springer, Berlin (2011)

  25. Paproth, C., Schlüßler, E., Scherbaum, P., Börner, A.: SENSOR++: simulation of remote sensing systems from visible to thermal infrared. In: International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XXXIX-B1, pp. 257–260 (2012)

  26. Pollini, A., Krüger, H.: Fosternav: flash optical sensor for terrain relative navigation. European Commission’s Directorate-General for Industry and Enterprise, Technical report (2012)

  27. Roll, R., Witte, L.: Rosetta lander philae—touch-down reconstruction. Planet. Space Sci. 125, 12–19 (2016)

    Article  Google Scholar 

  28. Rusinkiewicz, S., Levoy, M.: Efficient variants of the ICP algorithm. In: Proceedings Third International Conference on 3-D Digital Imaging and Modeling, pp. 145–152 (2001)

  29. Shi, J., Tomasi, C.: Good features to track. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 593–600 (1994)

  30. Szeliski, R.: Computer Vision: Algorithms and Applications. Texts in Computer Science, 1st edn. Springer, London (2010)

    MATH  Google Scholar 

  31. Witte, L., Roll, R., Biele, J., Ulamec, S., Jurado, E.: Rosetta lander philae—landing performance and touchdown safety assessment. Acta Astron. (2016)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Theil.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Theil, S., Ammann, N., Andert, F. et al. ATON (Autonomous Terrain-based Optical Navigation) for exploration missions: recent flight test results. CEAS Space J 10, 325–341 (2018). https://doi.org/10.1007/s12567-018-0201-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12567-018-0201-0

Keywords

Navigation