Skip to main content
Log in

COBRA contactless detumbling

  • Original Paper
  • Published:
CEAS Space Journal Aims and scope Submit manuscript

Abstract

COBRA is the proposed technique to control the motion of a non-cooperative target by means of the interaction between the thruster exhaust gases from the chaser and the target object. In the original ESA SysNova study, the COBRA concept was investigated as an active debris removal system, using contactless technology to deorbit a space debris object and to control its attitude. It was found that the concept is more effective for controlling the attitude of a debris object. An on-orbit experiment was proposed to have a chaser modify the attitude state of a space object in ESA’s COBRA IRIDES project, which has now been canceled due to the lack of propellant in the chaser spacecraft. This study presents the results of an internal follow-up study on how to effectively use the COBRA concept for detumbling a large debris object and controlling its attitude motion prior to capture operations in an active debris removal mission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Committee on Space Debris.: Orbital Debris: A Technical Assessment. National Academies Press, Washington (1995)

  2. Euroconsult.: Satellite to be Built and Launched by 2023, World Market Survey (2014)

  3. Kaplan, M. H., Bradley Boone, B., Brown, R., Criss, T. B., Tunstel, E. W.: Engineering issues for all major modes of in situ space debris capture, AIAA SPACE 2010 conference and exposition 30 August–2 September 2010, Anaheim, California (2010)

  4. Liou, J.-C., Johnson, N.L., Hill, N.M.: Controlling the growth of future LEO debris populations with active debris removal. Acta Astronaut 66, 648–653 (2010). doi:10.1016/j.actaastro.2009.08.005

    Article  Google Scholar 

  5. Liou, J. C.: A parametric study on using active debris removal for LEO environment remediation. In: 61st international astronautical congress, Prague, Czech Republic, Paper IAC-10.A6.2.5 (2010)

  6. Levin, E., Pearson, J., Carroll, J.: Wholesale debris removal from LEO. Acta Astronaut 73, 100–108 (2012)

    Article  Google Scholar 

  7. Boehnhardt, H., Koehnhke, H., Seidel, A.: The acceleration and the deceleration of the tumbling period of Rocket Intercosmos 11 during the first 2 years after launch. Astrophys Space Sci 162(2), 297–313 (1989)

    Article  Google Scholar 

  8. Ortiz Gómez, N., Walker, S.: Earth’s gravity gradient and Eddy currents effects on the rotational dynamics of space debris objects: Envisat case study. Adv Space Res (2014). doi:10.1016/j.asr.2014.12.031

    Google Scholar 

  9. Bastida Virgili, B., Lemmens, S., Krag, H.: Investigation on Envisat attitude motion, e.Deorbit Workshop (2014)

  10. Kucharski, D., Kirchner, G., Koidl, F., Fan, C., Carman, R., Moore, C., Feng, Q.: Attitude and spin period of space debris Envisat measured by satellite laser ranging. IEEE Trans Geosci Remote Sens 52(12), 7651–7657 (2014). doi:10.1109/TGRS.2014.2316138

    Article  Google Scholar 

  11. Carroll, J. A.: Space transport development using orbital debris. Final Report on NIAC Phase I, Research Grant, (07600-087) (2002)

  12. Santoni, F., Cordelli, E., Piergentili, F.: Determination of disposed-upper-stage attitude motion by ground-based optical observations. J Spacecr Rockets 50(3), 701–708 (2013). doi:10.2514/1.A32372

    Article  Google Scholar 

  13. Maier, P., Rathnasabapathy, M., Lu, Z.: Active debris removal: a multinational policy option IAC-12-A6.6.1. In: Proceedings of the 63rd international astronautical congress, Naples, Italy (2012)

  14. Emanuelli, M., Chow, T., Prasad, D., Federico, G., Loughman, J.: Conceptualizing an economically, legally and politically viable active debris removal option, IAC-13-A6.8.1. In: Proceedings of the 64th international astronautical congress, Beijing, China (2013)

  15. Biesbroek, R., et al.: The e.Deorbit CDF study. In: 6th IAASS conference, Montréal, Canada (2013)

  16. ESA, 2012, CDF report eDeorbit, CDF-135(C)

  17. ESA eDeorbit Study Team: e.deorbit Phase B1—Mission and System Requirements Document (MSRD) (2015)

  18. Estable, S., Bischof, B., Oswald, M., Soppa, U., Axthelm, R., Mistritta, G., Voigt, P., Wolters, R., Ducerf, F., Capolupo, F., Barraclough, S., Saunders, C., Peters, T. V., Lampariello, R., Chiesa, A., Biesbroek, R:, Envisat removal by robotic and net capture means. Results of the Airbus DS led e.Deorbit Phase A ESA study. In: Proceedings of the 5th CEAS air and space conference (2015)

  19. Caubet, A., Biggs, J.: Design of an attitude stabilization electromagnetic module for detumbling uncooperative targets. Aerospace conference, 2014 IEEE (2013). 10.1109/AERO.2014.6836325

  20. Peters, T. V., Pellacani, A., Attina, P., Lavagna, M., Benvenuto, R., Luraschi, E.: Cobra active debris removal concept, IAC-13-A6,6,6. In: Proceedings of the 64th international astronautical congress, Beijing (2013)

  21. Ferrari, F., Benvenuto, R., Lavagna, M.: Gas plume impingement technique for space debris de-tumbling. In: Proceedings of the 9th international ESA conference on guidance, navigation and control systems (GNC 2014)

  22. Ferrari, F., Lavagna, M.: Free tumbling objects attitude control via contactless chaser authority exploiting a formation flying architecture. In: Proceedings of the 8th international workshop on satellite constellations and formation flying, Delft, The Netherlands (2015)

  23. Kawamoto, S., Matsumoto, K., Wakabayashi, S.: Ground experiment of mechanical impulse method for uncontrollable satellite capturing. In: Proceeding of the 6th international symposium on artificial intelligence and robotics and automation in space: i-SAIRAS 2001, Canadian Space Agency, St-Hubert, Quebec, Canada, June 18–22, 2001 (2001)

  24. Voirin, T., Kowaltschek, S. Dubois-Matra, O.: NoMAD: a contactless technique for active large debris removal, IAC-12-A6,7,3.x14126. In: Proceedings of the 63rd international astronautical congress, Naples, Italy (2012)

  25. Sugai, F., Abiko, S., Tsujita, T., Jiang, X., Uchiyama, M.: Detumbling an uncontrolled satellite with contactless force by using an eddy current brake. Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ international conference on (pp. 783–788). IEEE (2013)

  26. Bennet, T., Schaub, H.: Touchless electrostatic three-dimensional detumbling of large geo debris. In: Proceedings of the AAS/AIAA spaceflight mechanics meeting, January 26–30, 2014, Santa Fe, New Mexico (2014)

  27. ESA, SysNova—GSP. http://gsp.esa.int/sysnova, viewed December 17th, 2015

  28. Bombardelli, C., Pelaez, J.: Ion beam sheperd for contactless space debris removal. J Guid Control Dyn 34(3), 916–920 (2011)

    Article  MathSciNet  Google Scholar 

  29. Peters, T. V., Escorial Olmos, D., Pellacani, A., Avilés Rodrigálvarez, M., Lavagna, M., Ferrari, F., Attina, P., Parissenti, G., Cropp, A.: The COBRA IRIDES experiment, IAC-14-A6.6.9. In: Proceedings of the 65th international astronautical congress, Toronto (2014)

  30. Fehse, W.: Automated Rendezvous and Docking of Spacecraft. Cambridge University Press, New York (2003)

    Book  Google Scholar 

  31. Anderson, J.D.: Fundamentals of Aerodynamics. McGraw-Hill, New York (1991)

    Google Scholar 

  32. Dettleff, G.: Plume flow and plume impingement in space technology. Prog Aerosp Sci 28(1), 1–71 (1991). doi:10.1016/0376-0421(91)90008-R

    Article  Google Scholar 

  33. Bird, G.A.: Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Oxford University Press, New York (1994)

    Google Scholar 

  34. Simons, G.A.: Effect of nozzle boundary layers on rocket exhaust plumes. AIAA J 10(11), 1534–1535 (1972). doi:10.2514/3.6656

    Article  Google Scholar 

  35. Ivanov, M.S., Markelov, G.N., Gerasimov, Y.I., Krylov, A.N., Mishina, L.V., Sokolov, E.I.: Free-flight experiment and numerical simulation for cold thruster plume. J Propul Power 15(3), 417–423 (1999). doi:10.2514/2.5460

    Article  Google Scholar 

  36. Boynton, F.P.: “Highly underexpanded jet structure: exact and approximate calculations. AIAA J 5(9), 1703–1704 (1967)

    Article  MATH  Google Scholar 

  37. Legge, H., Boetcher, R. D.: Modelling control thruster plume flow and impingement. In: Proceedings of the 13th international symposium on rarefied gas dynamics, pp. 983–992 (1985)

  38. Bird, G. A.: Breakdown of continuum flow in free jets and rocket plumes. In: Rarefied gas dynamics; international symposium, 12th, Charlottesville, VA, July 7–11, 1980, Technical Papers. Part 2. (A82-13026 03-77) New York, American Institute of Aeronautics and Astronautics, pp. 681–694 (1981)

  39. Ivanov, M.S.: “User manual for Rarefied Gas Dynamics Analysis System (RGDAS)”, Khristianovich Institute of Theoretical and Applied Mechanics (ITAM). Russian Academy of Sciences, Siberian Branch (2010)

    Google Scholar 

  40. Ivanov, M.S.: “Technical Description of the Rarefied Gas Dynamics Analysis System (RGDAS)”, Khristianovich Institute of Theoretical and Applied Mechanics (ITAM). Russian Academy of Sciences, Siberian Branch (2009)

    Google Scholar 

  41. Dettleff, G., Boettcher, R.-D., Dankert, C., Koppenwallner, G., Legge, H.: 1986, “Attitude control thruster plume flow modeling and experiments”. J Spacecr Rockets 23(5), 476–481 (1986). doi:10.2514/3.25832

    Article  Google Scholar 

  42. Plähn, K., Dettleff, G.: Modelling of N2-thruster plumes based on experiments in STG. Rarefied gas dynamics: 22nd international symposium, vol. 585. No. 1 (2001)

  43. Rosenhauer, M., Plahn, K., Hannemann, K.: Numerical investigation of hydrogen plumes and comparison with experiments in STG. In: Proceedings of the rarefied gas dynamics: 22nd international symposium, AIP Conf. Proc. 585, 819 (2001). doi:10.1063/1.1407644

  44. Brown, C.D.: Spacecraft propulsion. AIAA Educ Ser (1996). doi:10.2514/4.862441

    Google Scholar 

  45. Montenbruck, O., Gill, E.: Satellite Orbits—Models, Methods, and Applications. Springer, Berlin (2000)

    MATH  Google Scholar 

  46. Klinkrad, H., Fritsche, B.: Orbit and attitude perturbations due to aerodynamics and radiation pressure. ESA Workshop on Space Weather, ESTEC, Noordwijk, The Netherlands (1998)

  47. Schaaf, S.A., Chambre, P.L.: Flow of rarefied gases. In: Emmons, H.W. (ed.) Fundamentals of Gas Dynamics, pp. 687–708. Princeton University Press, Princeton (1958)

    Google Scholar 

  48. Sentman, L. H.: Free molecule flow theory and its application to the determination of aerodynamic forces. Lockheed Missile and Space Co., LMSC-448514, AD 265-409, Sunnyvale, CA (1961)

  49. Sutton, E.K.: Normalized force coefficients for satellites with elongated shapes. J Spacecr Rockets 46(1), 112–116 (2009). doi:10.2514/1.40940

    Article  MathSciNet  Google Scholar 

  50. Sutton, K.E., Nerem, J.M., Forbes, J.M.: Density and winds in the thermosphere deduced from accelerometer data. J Spacecr Rockets 44(6), 1210–1219 (2007). doi:10.2514/1.28641

    Article  Google Scholar 

  51. Koppenwallner, G.: Comment on special section: new perspectives on the satellite drag environments of earth, mars, and venus. J Spacecr Rockets 45(6), 1324–1327 (2008). doi:10.2514/1.37539

    Article  Google Scholar 

  52. Moe, K., Moe, M.M.: Gas–surface interactions and satellite drag coefficients. Planet Space Sci 53(2005), 793–801 (2005)

    Article  Google Scholar 

  53. Schamberg, R.: A new analytical representation of surface interaction for hyperthermal free molecular flow. Rand Corp. RM-2313, Santa Monica, CA (1959)

  54. Imbro, D.R., Moe, M.M., Moe, K.: On fundamental problems in the deduction of atmospheric densities from satellite drag. J Geophys Res 80, 3077–3086 (1975)

    Article  Google Scholar 

  55. Moe, M.M., Tsang, L.C.: Drag coefficients for cones and cylinders according to Schamberg’s model. AIAA J 11, 396–399 (1973)

    Article  Google Scholar 

  56. Fuller, J.D., Tolson, R.H.: Improved method for the estimation of spacecraft free-molecular aerodynamic properties. J Spacecr Rockets 46(5), 938–948 (2009). doi:10.2514/1.43205

    Article  Google Scholar 

  57. Cook, G.E.: Satellite drag coefficients. Planet Space Sci (1965). doi:10.1016/0032-0633(65)90150-9

    Google Scholar 

  58. Storch, J. A.: Aerodynamic disturbances on spacecraft in free-molecular flow, TR-2003(3397)-1 (2002)

  59. Möller, T., Trumbore, B.: “Fast, minimum storage ray-triangle intersection. J Graphics Tools 2(1), 21–28 (1997). doi:10.1080/10867651.1997.10487468

    Article  Google Scholar 

  60. Franklin, G.F., Powell, J.D., Workman, M.L.: Digital Control of Dynamic Systems, 3rd edn, pp. 371–381. Addison-Wesley, Boston (1998)

    Google Scholar 

  61. Sholes, B., Zeller, C., Matheson, B.: Hydrazine Thruster Plume Contamination Analysis for the Kepler Photometer. In: Proceedings of the 3rd European Workshop on Hydrazine (ESA SP-556). 9 June 2004, Chia Laguna (Cagliari), Sardinia, Italy, Editor: A. Wilson, Published on CDROM., id.6.1 (2004)

  62. Doornbos, E.: Evaluation of satellite aerodynamic and radiation pressure acceleration models using accelerometer data. In: Proceedings of the 6th international conference on astrodynamics tools and techniques, March 14–17 2016, Darmstadt (2016)

  63. Doornbos, E., Van Den Ijssel, J., Luehr, H., Foerster, M., Koppenwallner, G.: Neutral density and crosswind determination from arbitrarily oriented multiaxis accelerometers on satellites. J Spacecr Rockets 47(4), 580–589 (2010). doi:10.2514/1.48114

    Article  Google Scholar 

  64. Fritsche, B.: Aerodynamic categorization of spacecraft in low earth orbits. In: Proceedings of the 6th international conference on astrodynamics tools and techniques, March 14–17 2016, Darmstadt (2016)

  65. Peters, T. V., Escorial Olmos, D.: Applicability of COBRA concept to detumbling space debris objects. In: Proceedings of the 6th international conference on astrodynamics tools and techniques, March 14–17 2016, Darmstadt (2016)

  66. Boyd, I. D.: Modelling of satellite control thruster plumes. University of Southampton, Department of Aeronautics and Astronautics, Doctoral Thesis (1988)

Download references

Acknowledgments

A portion of the work performed for this article was performed during ESA’s SysNova challenge [27] and the COBRA-IRIDES activity. These activities were performed in collaboration with the Politecnico di Milano and Thales Alenia Italy. GMV has continued pursuing this concept through internal studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas V Peters.

Additional information

This paper is based on a presentation at the 5th CEAS Air and Space Conference, September 11–15, 2015, Delft, The Netherlands.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peters, T.V., Escorial Olmos, D. COBRA contactless detumbling. CEAS Space J 8, 143–165 (2016). https://doi.org/10.1007/s12567-016-0116-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12567-016-0116-6

Keywords

Navigation