Skip to main content
Log in

Assessment of existing and new modeling strategies for the simulation of OH* radiation in high-temperature flames

  • Original Paper
  • Published:
CEAS Space Journal Aims and scope Submit manuscript

Abstract

Four methods to calculate OH* radiation from numerical simulations of flames above 2700 K are presented: (1) A state-of-the-art chemiluminescence model: OH* emission is assumed to be proportional to the concentration of an excited sub-species OH*. OH* is implemented in the detailed chemical reaction mechanism. (2) A spectral model: emission and absorption are computed and integrated on a line-by-line basis from the HITRAN data base. (3) An equilibrium filtered radiation model: it provides a very simple way to compute OH* emissivity in a post-processing step. This is a simplification of the chemiluminescence model suitable for high-temperature flames. (4) An extension of the latter model to approximate the influence of self-absorption. The advantages and limitations of all approaches are discussed from a physics-based perspective. Their performances are assessed in a laminar hydrogen–oxygen jet flame at varying pressure. The importance of self-absorption for OH* radiation is analyzed and emphasized. Recommendations for the model selection are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. The latter assumption was recently justified numerically by Hossain and Nakamura [28].

Abbreviations

\(A_{i\rightarrow j}\) :

Einstein coefficient A (1/s)

c :

Speed of light (m/s)

e :

Emission coefficient (W/sr/m\(^3\))

\(g^\ominus _{\mathrm{m}}\) :

Standard-state molar Gibbs energy (J/kmol)

\(\tilde{g}\) :

Degeneracy (\(-\))

h :

Planck constant (J s)

k :

Absorption coefficient (1/m)

K :

Equilibrium constant (\(-\))

\(k_{\mathrm{B}}\) :

Boltzmann constant (J/K)

\(k_{\mathrm{r}}\) :

Reduced absorption coefficient (1/m/kmol)

L :

Radiance (W/m\(^2\)/sr)

N :

Number of molecules (\(-\))

p :

Pressure (bar)

\(R_m\) :

Gas constant (J/kmol/K)

T :

Temperature (K)

v :

Vibrational quantum number (\(-\))

z :

Coordinate (m)

\(\lambda \) :

Wavelength (m)

\(\nu \) :

Frequency (Hz)

\({\mathrm{[M]}}\) :

Concentration of molecule M (kmol/m\(^3\))

References

  1. Test case rcm-3: Mascotte single injector 60 bar. In: 2nd International Workshop Rocket Combustion Modeling (2001)

  2. ANSYS FLUENT Theory Guide. ANSYS, INC., release 14.0 edn (2011)

  3. SpectralCalc manual. GATS Inc. http://www.spectralcalc.com (2014)

  4. Atkins, P., de Paula, J.: Physical Chemistry, 10th edn. Oxford University Press, Oxford (2014)

    Google Scholar 

  5. Belles, F.E., Lauver, M.R.: Origin of oh chemiluminescence during the induction period of the H\(_2\)–O\(_2\) reaction behind shock waves. J. Chem. Phys. 40(2), 415–422 (1964). doi:10.1063/1.1725129

    Article  Google Scholar 

  6. Brockhinke, A., Krüger, J., Heusing, M., Letzgus, M.: Measurement and simulation of rotationally-resolved chemiluminescence spectra in flames. Appl. Phys. Lasers Opt. 107(3), 539–549 (2012). doi:10.1007/s00340-012-5001-1

    Article  Google Scholar 

  7. Bülter, A., Lenhard, U., Rahmann, U., Kohse-Höinghaus, K., Brockhinke, A.: Laskin: efficient simulation of spectra affected by energy transfer. In: Laser Applications to Chemical and Environmental Analysis, Optical Society of America (2004)

  8. Burcat, A., Ruscic, B.: Third Millennium Ideal Gas and Condensed Phase Thermochemical Database for Combustion with Updates from Active Thermochemical Tables. Tech. Rep. ANL-05/20, Argonne National Laboratory (2005)

  9. Burrows, M.C.: Radiation processes related to oxygen-hydrogen combustion at high pressures. Symp. (Int.) Combust. 10(1), 207–215. doi:10.1016/S0082-0784(65)80165-5, tenth Symposium (International) on Combustion (1965)

  10. Charton, M., Gaydon, A.G.: Excitation of spectra of oh in hydrogen flames and its relation to excess concentrations of free atoms. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 245(1240), 84–92 (1958). doi:10.1098/rspa.1958.0068

    Article  Google Scholar 

  11. Daguse, T., Croonenbroek, T., Rolon, J.C., Darabiha, N., Soufiani, A.: Study of radiative effects on laminar counterflow H\(_2\)/O\(_2\)N\(_2\) diffusion flames. Combust. Flame 106(3), 271–287 (1996). doi:10.1016/0010-2180(95)00251-0

    Article  Google Scholar 

  12. Dandy, D.S., Vosen, S.R.: Numerical and experimental studies of hydroxyl radical chemiluminescence in methane-air flames. Combust. Sci. Technol. 82(1), 131–150 (1992). doi:10.1080/00102209208951816

    Article  Google Scholar 

  13. Dieke, G.H., Crosswhite, H.M.: The ultraviolet bands of OH fundamental data. J. Quant. Spectrosc. Radiat. Transf. 2(2), 97–199 (1962). doi:10.1016/0022-4073(62)90061-4

    Article  Google Scholar 

  14. Dimpfl, W.L., Kinsey, J.L.: Radiative lifetimes of OH(A2[Sigma]) and Einstein coefficients for the A-X system of OH and OD. J. Quant. Spectrosc. Radiat. Transf. 21(3), 233–241 (1979). doi:10.1016/0022-4073(79)90014-1

    Article  Google Scholar 

  15. Fiala, T.: Radiation from high pressure hydrogen–oxygen flames and its use in assessing rocket combustion instability. PhD thesis, Technische Universität München (2015)

  16. Fiala, T., Sattelmayer, T.: On the use of OH* radiation as a marker for the heat release rate in high-pressure hydrogen–oxygen liquid rocket combustion. In: 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 2013–3780, doi:10.2514/6.2013-3780 (2013)

  17. Fiala, T., Sattelmayer, T.: A posteriori computation of OH* radiation from numerical simulations in rocket combustion chambers. In: 5th European Conference for Aeronautics and Space Sciences (EUCASS), Munich, doi:10.13140/2.1.1852.0966 (2013)

  18. Fiala, T., Nettinger, M., Rieger, F., Kumar, A., Sattelmayer, T.: Emission and absorption measurement in enclosed round jet flames. In: 16th International Symposium on Flow Visualization, Okinawa, Japan, 1138, doi:10.13140/2.1.3424.9609 (2014)

  19. Gardiner, W.C., Morinaga, K., Ripley, D.L., Takeyama, T.: Shock-tube study of oh (sigma\(-\)pi) luminescence. Phys Fluids 12(5), I−120−I−124 (1969). doi:10.1063/1.1692590

    Article  Google Scholar 

  20. Gaydon, A.G.: The Spectroscopy of Flames, 2nd edn. Chapman and Hall, London (1974)

    Book  Google Scholar 

  21. Gaydon, A.G., Wolfhard, H.G.: The spectrum-line reversal method of measuring flame temperature. Proc. Phys. Soc. Sect. A 65(1), 19 (1952). doi:10.1088/0370-1298/65/1/303

    Article  Google Scholar 

  22. Gillis, J.R., Goldman, A., Stark, G., Rinsland, C.P.: Line parameters for the \(a^2\sigma ^+ x^2\pi \) bands of OH. J. Quant. Spectrosc. Radiat. Transf. 68(2), 225–230 (2001). doi:10.1016/S0022-4073(00)00011-X

    Article  Google Scholar 

  23. Goos, E., Burcat, A.: Overview of thermochemistry and its application to reaction kinetics. In: Rate Constant Calculation for Thermal Reactions, pp. 1–32. Wiley, New York. doi:10.1002/9781118166123.ch1 (2011)

  24. Gutman, D., Lutz, R.W., Jacobs, N.F., Hardwidge, E.A., Schott, G.L.: Shock-tube study of oh chemiluminescence in the hydrogen–oxygen reaction. J. Chem. Phys. 48(12), 5689–5694 (1968). doi:10.1063/1.1668656

    Article  Google Scholar 

  25. Hall, J.M., Petersen, E.L.: An optimized kinetics model for OH chemiluminescence at high temperatures and atmospheric pressures. Int. J. Chem. Kinet. 38(12), 714–724 (2006). doi:10.1002/kin.20196

    Article  Google Scholar 

  26. Hardi, J.S.: Experimental investigation of high frequency combustion instability in cryogenic oxygen–hydrogen rocket engines. PhD thesis, The University of Adelaide (2012)

  27. Hidaka, Y., Takahashi, S., Kawano, H., Suga, M., Gardiner, W.C.: Shock-tube measurement of the rate constant for excited hydroxyl(A2.SIGMA.+) formation in the hydrogen–oxygen reaction. J. Phys. Chem. 86(8), 1429–1433 (1982). doi:10.1021/j100397a043

    Article  Google Scholar 

  28. Hossain, A., Nakamura, Y.: A numerical study on the ability to predict the heat release rate using CH* chemiluminescence in non-sooting counterflow diffusion flames. Combust. Flame 161(1), 162–172 (2014). doi:10.1016/j.combustflame.2013.08.021

    Article  Google Scholar 

  29. Huber, K.P., Herzberg, G.: Molecular Spectra and Molecular Structure—IV. Constants of Diatomic Molecules. Van Nostrand Reinhold, New York (1979)

    Google Scholar 

  30. Kaskan, W.E.: Abnormal excitation of OH in H\(_2\)/O\(_2\)/N\(_2\) flames. J. Chem. Phys. 31(4), 944–956 (1959). doi:10.1063/1.1730556

    Article  Google Scholar 

  31. Kathrotia, T., Fikri, M., Bozkurt, M., Hartmann, M., Riedel, U., Schulz, C.: Study of the H+O+M reaction forming OH*: kinetics of OH* chemiluminescence in hydrogen combustion systems. Combust. Flame 157(7), 1261–1273 (2010). doi:10.1016/j.combustflame.2010.04.003

    Article  Google Scholar 

  32. Kee, R.J., Rupley, F.M., Miller, J.A., Coltrin, M.E., Grcar, J.F., Meeks, E., Moffat, H.K., Lutz, A.E., Dixon-Lewis, G., Smooke, M.D., Warnatz, J., Evans, G.H., Larson, R.S., Mitchell, R.E., Petzold, L.R., Reynolds, W.C., Caracotsios, M., Stewart, W.E., Glarborg, P., Wang, C., Adigun, O.: Chemkin Collection. Reaction Design, release 3.6 edn (2000)

  33. Kee, R.J., Coltrin, M.E., Glarborg, P.: Chemically Reacting Flow. Wiley-Interscience, New York (2003)

  34. Koike, T., Morinaga, K.: Further studies of the rate constant for chemical excitation of OH in shock waves. Bull. Chem. Soc. Jpn. 55(1), 52–54 (1982). doi:10.1246/bcsj.55.52

    Article  Google Scholar 

  35. Lauer, M., Sattelmayer, T.: On the adequacy of chemiluminescence as a measure for heat release in turbulent flames with mixture gradients. J. Eng. Gas Turbines Power 132(6), 061502 (2010). doi:10.1115/1.4000126

    Article  Google Scholar 

  36. Lauer, M., Zellhuber, M., Aul, C.J., Sattelmayer, T.: Determination of the heat release distribution in turbulent flames by a model based correction of OH* chemiluminescence. In: Proceedings of ASME Turbo Expo 2011, GT2011-45105 (2011)

  37. Leo, M.D., Saveliev, A., Kennedy, L.A., Zelepouga, S.A.: OH and CH luminescence in opposed flow methane oxy-flames. Combust. Flame 149(4), 435–447 (2007). doi:10.1016/j.combustflame.2007.01.008

    Article  Google Scholar 

  38. Luque, J., Crosley, D.R.: Transition probabilities in the \(A^2 \Sigma ^+\)- \(X^2 \Pi _i\) electronic system of OH. J. Chem. Phys. 109(2), 439–448 (1998). doi:10.1063/1.476582

    Article  Google Scholar 

  39. Luque, J., Crosley, D.R.: Lifbase 1.9. SRI International (1999)

  40. Mavrodineanu, R., Boiteux, H.: Flame Spectroscopy. Wiley, New York (1965)

    Google Scholar 

  41. Modest, M.F.: Radiative Heat Transfer, 3rd edn. Elsevier, Amsterdam (2013)

    Google Scholar 

  42. Ó Conaire, M., Curran, H.J., Simmie, J.M., Pitz, W.J., Westbrook, C.K.: A comprehensive modeling study of hydrogen oxidation. Int. J. Chem. Kinet. 36(11), 603–622 (2004). doi:10.1002/kin.20036

    Article  Google Scholar 

  43. Paul, P.: A model for temperature-dependent collisional quenching of OH \(A^2 \Sigma ^+\). J. Quant. Spectrosc. Radiat. Transf. 51(3), 511–524 (1994). doi:10.1016/0022-4073(94)90150-3

    Article  Google Scholar 

  44. Petersen, E., Kalitan, D., Rickard, M.: Calibration and chemical kinetics modeling of an oh chemiluminesence diagnostic. In: 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, American Institute of Aeronautics and Astronautics, doi:10.2514/6.2003-4493 (2003)

  45. Petersen, E., Kopp, M., Donato, N., Güthe, F.: Assessment of current chemiluminescence kinetics models at engine conditions. In: Proceedings of ASME Turbo Expo 2011: Power for Land, Sea and Air, GT2011-45914 (2011)

  46. Pohl, S., Jarczyk, M.M., Pfitzner, M.: A real gas laminar flamelet combustion model for the cfd-simulation of lox/gh2 combustion. In: 5th European Combustion Meeting, 86 (2011)

  47. Rothman, L., Gordon, I., Barbe, A., Benner, D., Bernath, P., Birk, M., Boudon, V., Brown, L., Campargue, A., Champion, J.P., Chance, K., Coudert, L., Dana, V., Devi, V., Fally, S., Flaud, J.M., Gamache, R., Goldman, A., Jacquemart, D., Kleiner, I., Lacome, N., Lafferty, W., Mandin, J.Y., Massie, S., Mikhailenko, S., Miller, C., Moazzen-Ahmadi, N., Naumenko, O., Nikitin, A., Orphal, J., Perevalov, V., Perrin, A., Predoi-Cross, A., Rinsland, C., Rotger, M., Šimečková, M., Smith, M., Sung, K., Tashkun, S., Tennyson, J., Toth, R., Vandaele, A., Auwera, J.V.: The HITRAN 2008 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 110(9–10), 533–572 (2009). doi:10.1016/j.jqsrt.2009.02.013

    Article  Google Scholar 

  48. Rothman, L., Tashkun, S., Mikhailenko, S., Gordon, I., Babikov, Y.: Hitran on the web. http://hitran.iao.ru/ (2014)

  49. Sisco, J.C.: Measurement and analysis of an unstable model rocket combustor. PhD thesis, Purdue University (2007)

  50. Smith, G.P., Park, C., Luque, J.: A note on chemiluminescence in low-pressure hydrogen and methane–nitrous oxide flames. Combust. Flame 140(4), 385–389 (2005). doi:10.1016/j.combustflame.2004.11.011

    Article  Google Scholar 

  51. SpectralFit, SAS: Specair 3.0 User manual (2012)

  52. Tamura, M., Berg, P.A., Harrington, J.E., Luque, J., Jeffries, J.B., Smith, G.P., Crosley, D.R.: Collisional quenching of CH(A), OH(A), and NO(A) in low pressure hydrocarbon flames. Combust. Flame 114(3–4), 502–514 (1998). doi:10.1016/S0010-2180(97)00324-6

    Article  Google Scholar 

  53. Török, A., Steelant, J., Sattelmayer, T. (2010) Cfd modelling concept for the computation of dynamic heat release in rocket motors. In: Space Propulsion, San Sebastian

Download references

Acknowledgments

The Deutsche Forschungsgemeinschaft (DFG) in the framework of Sonderforschungsbereich Transregio 40 provided financial support for this project. We thank our project partners M. Oschwald and S. Gröning from DLR Lampoldshausen for helpful discussions.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Fiala.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fiala, T., Sattelmayer, T. Assessment of existing and new modeling strategies for the simulation of OH* radiation in high-temperature flames. CEAS Space J 8, 47–58 (2016). https://doi.org/10.1007/s12567-015-0107-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12567-015-0107-z

Keywords

Navigation