Skip to main content
Log in

Murine’s amygdala microstructure and elevated plus maze activities following R. vomitoria root bark and G. latifolium leaf extracts administration

  • Original Article
  • Published:
Anatomical Science International Aims and scope Submit manuscript

Abstract

R. vomitoria (RV), a plant used locally in the management of psychotic disorders, adversely affects the brain functionally and structurally. Such adverse reports, as well as the potential of G. latifolium (GL) to mitigate same warranted this investigation on the combined actions of RV and GL on the amygdala. Twenty-four male CD-1 mice weighing 22–27 g were divided into four groups (n = 6): Control (20 ml/kg body weight, b.w., distilled water); RV (200 mg/kg b.w.), GL (200 mg/kg b.w.), and RV (200 mg/kg b.w.) and GL (200 mg/kg b.w.) combination orally, and for 14 days. On day 15, the elevated-plus maze test was carried out and the animals sacrificed, and processed for histological and immunohistochemical studies. Neurobehavioural results showed significant decrease (p\(\le \) 0.001) in stretch-attend posture, time spent in closed arms, grooming frequency, protected head-dip, as well as significantly (p \(\le \) 0.01) increased time spent in the open arms and unprotected head-dips of the RV group. The combined RV and GL groups showed no such differences in these parameters. Histologically, the amygdala showed hypertrophied cells, with pyknotic and karyorrhectic nuclei, and reduced expression of Nissl substance in the RV group, while the combined RV and GL group showed less degenerative features. Glial fibrillary acidic protein expression (GFAP) was increased in the RV group, while the combined RV and GL group showed reduced expression. In conclusion, RV root bark extract has adverse effects on the microstructure of murines’ amygdala and their behaviour, which may be ameliorated by GL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

b.w.:

Body weight

DPX:

Di-polycystein xylene

GFAP:

Glial fibrillary acidic protein

GL:

Gongronema latifolium

H&E:

Haematoxylin and eosin

IgG:

ImmunoglobulinG

NSE:

Neuron specific enolase

RV:

Rauvolfia vomitoria

SEM:

Standard error of mean

References

  • Akanji MA, Yakubu MT, Kazeem MI (2013) Hypolipidemic and toxicological potential of aqueous extract of Rauvolfia vomitoria afzel root in Wistar rats. J Med Sci 13(4):253–260

    Google Scholar 

  • Aquaisua AN, Edagha IA (2017) Haematological and immunohistochemical effects of Gongronema latifolium on the hippocampus of albino Wistar rats. Res Neurosci 6(1):5–10

    Google Scholar 

  • Babaev O, Chatain CP, Krueger-Burg D (2018) Inhibition in the amygdala anxiety circuitry. Exp Mol Med 50:18

    PubMed  PubMed Central  Google Scholar 

  • Bailey KR, Crawley JN (2009) Anxiety-related behaviors in mice. In: Buccafusco JJ (ed) Methods of behavior analysis in neuroscience, 2nd edn. CRC Press/Taylor & Francis, Boca Raton

  • Bauman MD, Amaral DG (2008) Neurodevelopment of social cognition. In: Nelson CA, Luciana M (eds) Handbook of developmental cognitive neuroscience, 2nd edn. Massachusetts Institute of Technology Press, Cambridge

  • Bondan EF, Martins MFM, Viani FC (2013) Decreased astrocytic GFAP expression in streptozotocin induced diabetes after gliotoxic lesion in the rat brainstem. Endocrinol Metab 57:431–436

    Google Scholar 

  • Bonde C, Noraberg J, Zimmer J (2002) Nuclear shrinkage and other markers of neuronal cell death after oxygen-glucose deprivation in rat hippocampal slice cultures. Neurosci Lett 327:49–52

    CAS  PubMed  Google Scholar 

  • Burkill HM (2002) Useful plants of west tropical africa. In: Daziel JM (ed) Flora of West Tropical Africa, vol. 4. Royal Botanical Gardens, Kew

  • Byrne JH, Roberts JL (1101p) From molecules to network: An introduction to cellular and molecular neuroscience. Academic Press, London, p 1101p

    Google Scholar 

  • Charles A, Evans AA, Mfoafo EW, Mahama D (2008) Anxiogenic effects of an aqueous crude extract of Cryptolepis sanguinolenta (Periplocaceae) in mice. Int J Pharmacol 4:20–26

    Google Scholar 

  • Cheville NF (2009) Ultrastructural pathology: the comparative cellular basis of disease, 2nd edn. Wiley-Blackwell, Iowa, p 856p

    Google Scholar 

  • David OK, Emma LW (2011) Herbal extract and phytochemicals: plant secondary metabolites and the enhancement of human brain function. J Adv Nutr Hum Metab 2:32–50

    Google Scholar 

  • Dawson GR, Crawford SP, Collinson N, Iversen SD, Tricklebank MD (1995) Use of the elevated-plus maze in the search for novel anxiolytic agents. Trends Pharmacol Sci 16:33–36

    CAS  PubMed  Google Scholar 

  • Effiong GS, Udoh IE, Mbagwu HO, Ekpe IP, Asuquo EN, Atangwho IJ, Ebong PE (2012) Acute and chronic toxicity studies of the ethanolic leaves extract of Gongronema latifolium. Int Res J Biochem Bioinform 2(7):155–161

    Google Scholar 

  • Ekong MB, Nwakanma AA (2017) Rauwolfia vomitoria and Gongronema latifolium extracts influences cerebellar cortex. Alzheimer’s, Dement Cogn Neurol 1(3):1–6

    Google Scholar 

  • Ekong MB, Peter MD, Peter AI, Eluwa MA, Umoh IU, Igiri AO, Ekanem TB (2014) Cerebellar neurohistology and behavioural effects of Gongronema latifolium and Rauwolfia vomitoria in mice. Metab Brain Dis 29:521–527

    PubMed  Google Scholar 

  • Ekong MB, Ekpene UU, Thompson FE, Peter AI, Udoh NB, Ekandem GJ (2015a) Effects of co-treatment of Rauwolfia vomitoria and Gongronema latifolium on neurobehaviour and the neurohistology of the cerebral cortex in mice. Internet J Med Update 10(1):3–10

    Google Scholar 

  • Ekong MB, Peter AI, Ekpene UU, Bassey EI, Eluwa MA, Akpanabiatu MI, Ekanem TB (2015b) Gongronema latifolium modulates Rauwolfia vomitoria induced behaviour, biochemicals, and histomorphology of the cerebral cortex. Int J Morphol 33(1):77–84

    Google Scholar 

  • Ekong MB, Peter AI, Ekpene UU (2016a) Co-administration of Rauwolfia vomitoria with Gongronema latifolium or Vernonia amygdalina on spatial learning, memory, and some bio-molecules. Asian J Med Sci 7:82–87

    Google Scholar 

  • Ekong MB, Peter AI, Edagha IA, Ekpene UU, Friday DA (2016b) Rauwolfia vomitoria inhibits olfaction and modifies olfactory bulb cells. Brain Res Bull 124:206–213

    CAS  PubMed  Google Scholar 

  • Ekong MB, Ekpene UU, Nwakanma AA, Bello EF (2017) The combination of the extracts of Rauwolfia vomitoria and Gongronema latifolium show protective effects on the cerebellum. Synergy 5:29–34

    Google Scholar 

  • Ekong MB, Muonagolu NJ, Akpan UB (2018) Rauwolfia vomitoria root bark extract affects the cervical ventral horn cells of the spinal cord. Ann Adv Med Sci 2(1):22–26

    Google Scholar 

  • Eluwa MA, Idumesaro NB, Ekong MB, Akpantah AO, Ekanem TB (2008) Effect of aqueous extract of Rauwolfia vomitoria root bark on the cytoarchitecture of the cerebellum and neurobehaviour of adult male wistar rats. Internet J Altern Med 6(2):1–7

    Google Scholar 

  • Eluwa MA, Ekanem TB, Udo PB, Ekong MB, Akpantah AO, Asuquo OR, Nwakanma AO (2013a) Teratogenic effects of crude ethanolic root bark and leaf extracts of Rauwolfia vomitoria (Apocynaceae) on the femur of Albino Wistar rat foetuses. J Histol 7(3):1–4

    Google Scholar 

  • Eluwa MA, Ekanem TB, Udo PB, Ekong MB, Akpantah AO, Asuquo OR, Nwakanma AO (2013b) Teratogenic effects of crude ethanolic extracts of root bark and leaf of Rauwolfia vomitoria (Apocynaceae) on Nissl substances of Albino Wistar rat foetuses. Neurosci J 5(2):7–12

    Google Scholar 

  • Ernst A, Frisen J (2015) Adult neurogenesis in humans- common and uniques traits in mammals. Biology 13(1):1–12

    Google Scholar 

  • Estanisalu C (2012) Cues to the usefulness of grooming behaviour in the evaluation of anxiety in the elevated-plus maze. Physiol Neurosci 5(1):105–112

    Google Scholar 

  • Fawcett JW, Asher RA (1999) The glial scar and central nervous system repair. Brain Res Bull 49(6):377–391

    CAS  PubMed  Google Scholar 

  • Fowler CD, Liu Y, Wang Z (2008) Estrogen and adult neurogenesis in the amygdala and hypothalamus. Brain Res Rev 57(2):342–351

    CAS  PubMed  Google Scholar 

  • Garcia-Amado M, Presensa L (2012) Stereological analysis of neuro, glial and endothelial cell numbers in the human amygdaloid complex. PLoS ONE 7(6):e38692

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Cabezas MA, John YJ, Barbas H, Zikopoulos B (2016) Disctinction of neurons, glia and endothelial cells in the cerebral cortex: an algorithm based on cytological features. Front Neuroanat 10:107

    PubMed  PubMed Central  Google Scholar 

  • Garman RH (2011) Histology of the central nervous system. Toxicol Pathol 39(1):22–35

    PubMed  Google Scholar 

  • Gersh I, Ibodian D (2010) Some chemical mechanisms in chromatolysis. J Cell Comp Biol 15(7):212–225

    Google Scholar 

  • Grant E, Mackintosh JA (1996) Comparison of the social postures of some common laboratory rodents. Behaviour 21:246–259

    Google Scholar 

  • Griebel G, Rodgers RJ, Perrault G, Sanger DJ (1997) Risk assessment behaviour: evaluation of utility in the study of 5-HT-related drugs in the rat elevated plus-maze test. Pharmacol Biochem Behav 57:817–827

    CAS  PubMed  Google Scholar 

  • Hareesh KV, Nirmala SS, Rajendra CE (2010) Reserpine content of Rauwolfia in response to geographical variation. Int J Pharm Biol Sci 1(4):429–434

    Google Scholar 

  • Holly KS, Orndorff CO, Murray TA (2016) MATSAP: An automated analysis of stretch-attend posture in rodent behavioural experiments. Sci Rep 6:31286

    CAS  PubMed  PubMed Central  Google Scholar 

  • Iweala EE, Liu F, Chang R, Li Y (2015) Anticancer and free radical scavenging activity of some Nigerian food plants in vitro. Int J Cancer Res 11(1):41–51

    CAS  Google Scholar 

  • Jha MK, Jo M, Kim J-H, Suk K (2019) Microglia-astrocyte crosstalk: an intimate molecular conversation. Neurosci 25(3):227–240

    CAS  Google Scholar 

  • Kiernan JA, Rajakumar R (2014) Limbic system: the hippocampus and amygdala. In: Barr’s the human nervous system: an anatomical viewpoint, 10th edn. Lippincott Williams and Wilkins, Baltimore

    Google Scholar 

  • Kimelberg HK (2010) Functions of mature mammalian astrocytes: a current view. Neuroscientist 16:79–106

    CAS  PubMed  Google Scholar 

  • Komada M, Takao K, Miyakawa T (2008) Elevated plus maze for mice. J Vis Exp 22:1–4

    Google Scholar 

  • Kumar P, Khanum F (2012) Neuroprotective potential of phytochemicals. Pharmacogn J 6(12):81–89

    Google Scholar 

  • Kutalek R, Prince A (2007) African medical plants. In: Yaniv Z, Bachrach U (eds) Handbook of medicinal plants. CBS Publishers, New Delhi

    Google Scholar 

  • Lister RG (1990) The use of a plus-maze to measure anxiety in the mouse. Psychopharmacology 92:180–185

    Google Scholar 

  • Liu C, Li Y, Lein PJ, Ford BD (2012) Spatiotemporal patterns of GFAP upregulation in rat brain following acute intoxication with diisopropylfluorophosphate (DFP). Curr Views Neurobiol 3:90–97

    CAS  Google Scholar 

  • Mairesse J, Viltart O, Salome N, Giuliani A, Catalani A, Casolini P, Morley-Fletcher S, Nicoletti F, Maccari S (2007) Prenatal stress alters the negative correlation between neuronal activation in limbic regions and behavioral responses in rats exposed to high and low anxiogenic environments. Psychoneuroendocrinology 32:765–776

    PubMed  Google Scholar 

  • Moon LDF (2018) Chromatolysis: Do injured axons regenerate poorly when ribonucleases attack rough endoplasmic reticulum, ribosomes and RNA? Dev Neurobiol 78(10):1011–1024

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morebise O (2015) A review on Gongronema latifolium, an extremely useful plant with great prospects. Eur J Med Plants 10(1):1–9

    Google Scholar 

  • Morebise O, Fafunso MA, Makinde JM, Olafide OA, Awe EO (2002) Antinflammatory properties of leaves of Gongronema latifolium. Phytother Res 16(1):575–577

    Google Scholar 

  • Nnodim J, Emejulu A (2011) The protective role of Gongronema latifolium in acetaminophen induced hepatic toxicity in Wistar rats. Asian Pac Jo Trop Biomed 15(2):151–154

    Google Scholar 

  • Nuss P (2015) Anxiety disorders and GABA neurotransmission: a disturbance of modulation. Neuropsychiatr Dis Treat 11:165–175. https://doi.org/10.2147/NDT.S58841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ode MA, Uchenwoke IO, Ogbu SO (2013) Phytochemical analysis of the leaves of Gongronema latifolium. J Med Plants Res 7(4):121–130

    Google Scholar 

  • Ojo OO, Ajayi SS, Owolabi LO (2012) Phytochemical screening, nutrient composition, proximate analysis and anti-microbial activities of the aqueous and organic extracts of root bark of Rauvolfia vomitoria and leaves of Peperomia pellucida. Int Res J Biochem Bioinform 2(6):127–134

    Google Scholar 

  • Okpako DT (1991) Principles of pharmacology: a tropical approach, 1st edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Peter RL, Eva S, Andreas E, Glenn IH, Herbert B (1998) Glials cells: their roles in behaviour, 1st edn. Cambridge University Press, London

    Google Scholar 

  • Poonam A, Agrawal S, Mishra S (2013) Physiological, biochemical and modern biotechnological approach to improvement of Rauvolfia serpentine. J Pharm Biol Sci 6(2):73–78

    Google Scholar 

  • Rey AA, Purrio M, Viveros MP, Lutz B (2012) Biphasic effects of cannabinoids in anxiety responses: CB1 and GABAB receptors in the balance of GABAergic and glutamatergic neurotransmission. Neuropsychopharmacology 37:2624–2634

    CAS  PubMed  PubMed Central  Google Scholar 

  • Richter D (2013) Biochemical factors concerned in the functional activity of the nervous system, 10th edn. Pergamon Press, London

    Google Scholar 

  • Robert AE, Luke UO, Udosen EO, Ufot SU, Effiong AE, Ekam VS (2013) Anti-diabetic and anti-hyperlipidemic properties of ethanol root extract of Gongronema latifolium (utazi) on streptozotocin (STZ) induced diabetic rats. J Sci Technol 3(10):995–998

    Google Scholar 

  • Rodgers RJ, Cao BJ, Dalvi A, Holmes A (1997) Animal models of anxiety: an ethological perspective. Braz J Med Biol Res 30:289–304

    CAS  PubMed  Google Scholar 

  • Smith ME, Eng LF (1987) Glial fibrillary acidic protein in chronic relapsing experimental allergic encephalomyelitis in mice. J Neurosci Res 18:203–208

    CAS  PubMed  Google Scholar 

  • Song C, Berridge KC, Kalueff AV (2016) ‘Stressing’ rodent self-grooming for neuroscience research. Nat Rev Neurosci 17(9):591

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tambuyzer BR, Ponsaerts P, Nouwen EJ (2009) Microglia: Gatekeepers of central nervous system immunology. J Leukoc Biol 85(3):352–370

    CAS  PubMed  Google Scholar 

  • Udo FV, Eshiet GA, Akpan GO, Edu FE (2013) Hypoglycemic effect of Gongronema latifolium leaves extract in rats. J Nat Sci Res 3(5):37–44

    Google Scholar 

  • Usoh IF, Akpan HD (2015) Antioxidative efficacy of combined leaves extracts of Gongronema latifolium and Ocimum gratissimum on streptozotocin induced diabetic rats. J Med Med Sci 2(6):88–95

    Google Scholar 

  • Vargas JP, Lopez JC, Portavella M (2012) Amygdala and emotional learning in vertebrates—a comparative perspective. In: Barbara F (ed) The amygdala—a discrete multitasking manger. Oxford University Press, New York, pp 1–32

    Google Scholar 

  • Venkatesh K, Srikanth L, Vengamma B, Chandrasekhar C, Sanjeevkumar A, Prasad B, Sarma P (2013) In-vitro differentiation of cultured human CD34+ cells into astrocytes. Neurol India 61:383–388

    PubMed  Google Scholar 

  • Voisinet BD, Grandin T, Tatum JD, O’Connor SF, Struthers JJ (1997) Feedlot cattle with calm temperaments have higher average daily gains than cattle with excitable temperaments. J Anim Sci 75:892–896

    CAS  PubMed  Google Scholar 

  • Walf AA, Frye CA (2007) The use of elevated-plus maze as an assay of anxiety related behaviour in rodents. Behav Neurosci 2(2):322–328

    CAS  Google Scholar 

  • Weiss S, Wadsworth G, Fletcher A, Dourish C (1998) Utility of ethological analysis to overcome locomotor confounds in elevated plus maze models of anxiety. Neurosci Biobehav Rev 23:265–271

    CAS  PubMed  Google Scholar 

  • Wilhelmsson U, Li L, Pekna M, Berthold CH, Blom S (2004) Absence of glial fibrillary acidic protein and vimentin prevents hypertrophy of astrocytic processes and improves post-traumatic regeneration. J Neurosci 24:5016–5021

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wolf HK, Aliashkevich AF, Blumke I, Wiestler OD, Zentner J (1997) Neuronal loss and gliosis of the amygdaloid nucleus in temporal lobe epilepsy: a quantitative analysis of 70 surgical specimens. Acta Neuropathol 93(6):606–610

    CAS  PubMed  Google Scholar 

  • Woode E, Amoateng P, Abotsi KM (2011) Ethnopharmacological analysis of the effects of the whole plant extracts of Syndrella nodifera in murine models. Pelagia Res Library 2(2):54–67

    CAS  Google Scholar 

  • Zhang L, Zhang J, You Z (2018) Switching of the microglial activation phenotype is a possible treatment for depression disorder. Front Cell Neurosci 12:306. https://doi.org/10.3389/fncel.2018.00306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We appreciate the assistance of Miss Mbere-Obong Umoren who cared for the animals, and the assistance of technical staff of the Histology Laboratory of the Department of Anatomy, University of Uyo, Uyo, Nigeria. We are also thankful to the management of the University of Uyo, for providing the needed research facilities.

Funding

None applicable.

Author information

Authors and Affiliations

Authors

Contributions

ISN: Carried out the research and wrote the initial draft of the manuscript. MBE: Conceived and designed the research; analyzed data and approved the final manuscript.

Corresponding author

Correspondence to Moses B. Ekong.

Ethics declarations

Conflict of interest

There is no conflict of interests.

Ethics approval and consent to participate

Approval for the study was granted by the Faculty of Basic Medical Sciences Ethical/Research Committee, University of Uyo, Nigeria, and all protocols involving handling and care of the animals were strictly adhered to.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nduohosewo, I.S., Ekong, M.B. Murine’s amygdala microstructure and elevated plus maze activities following R. vomitoria root bark and G. latifolium leaf extracts administration. Anat Sci Int 95, 342–355 (2020). https://doi.org/10.1007/s12565-020-00527-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12565-020-00527-1

Keywords

Navigation