Skip to main content

Organization of organelles and VAMP-associated vesicular transport systems in differentiating skeletal muscle cells

Abstract

Vesicular transport plays an important role in the regulation of cellular function and differentiation of the cell, and intracellular vesicles play a role in the delivery of membrane components and in sorting membrane proteins to appropriate domains in organelles and the plasma membrane. Research on vesicular transport in differentiating cells has mostly focused on neurons and epithelial cells, and few such studies have been carried out on skeletal muscle cells. Skeletal muscle cells have specialized organelles and plasma membrane domains, including T-tubules, sarcoplasmic reticulum, neuromuscular junctions, and myotendinous junctions. The differentiation of skeletal muscle cells is achieved by multiple steps, i.e., proliferation of myoblasts, formation of myotubes by cell–cell fusion, and maturation of myotubes into myofibers. Systematic vesicular transport is expected to play a role in the maintenance and development of skeletal muscle cells. Here, we review a map of the vesicular transport system during the differentiation of skeletal muscle cells. The characteristics of organelle arrangement in myotubes are described according to morphological studies. Vesicular transport in myotubes is explained by the expression profiles of soluble N-ethylmaleimide-sensitive factor attachment protein receptor proteins.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Advani RJ, Bae HR, Bock JB et al (1998) Seven novel mammalian SNARE proteins localize to distinct membrane compartments. J Biol Chem 273:10317–10324

    CAS  PubMed  Article  Google Scholar 

  2. Advani RJ, Yang B, Prekeris R et al (1999) VAMP-7 mediates vesicular transport from endosomes to lysosomes. J Cell Biol 146:765–776

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  3. Bach A-S, Enjalbert S, Comunale F et al (2010) ADP-ribosylation factor 6 regulates mammalian myoblast fusion through phospholipase D1 and phosphatidylinositol 4,5-bisphosphate signaling pathways. Mol Biol Cell 21:2412–2424. doi:10.1091/mbc.E09-12-1063

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  4. Baumert M, Maycox PR, Navone F et al (1989) Synaptobrevin: an integral membrane protein of 18,000 Daltons present in small synaptic vesicles of rat brain. EMBO J 8:379–384

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Buckingham M, Relaix F (2007) The role of Pax genes in the development of tissues and organs: pax3 and Pax7 regulate muscle progenitor cell functions. Annu Rev Cell Dev Biol 23:645–673. doi:10.1146/annurev.cellbio.23.090506.123438

    CAS  PubMed  Article  Google Scholar 

  6. Burattini S, Ferri P, Battistelli M et al (2004) C2C12 murine myoblasts as a model of skeletal muscle development: morpho-functional characterization. Eur J Histochem 48:223–233

    CAS  PubMed  Google Scholar 

  7. Burkin DJ, Kaufman SJ (1999) The alpha7beta1 integrin in muscle development and disease. Cell Tissue Res 296:183–190

    CAS  PubMed  Article  Google Scholar 

  8. Cai H, Reinisch K, Ferro-Novick S (2007) Coats, tethers, Rabs, and SNAREs work together to mediate the intracellular destination of a transport vesicle. Dev Cell 12:671–682. doi:10.1016/j.devcel.2007.04.005

    CAS  PubMed  Article  Google Scholar 

  9. Chaineau M, Danglot L, Galli T (2009) Multiple roles of the vesicular-SNARE TI-VAMP in post-Golgi and endosomal trafficking. FEBS Lett 583:3817–3826. doi:10.1016/j.febslet.2009.10.026

    CAS  PubMed  Article  Google Scholar 

  10. Chen EH, Pryce BA, Tzeng JA et al (2003) Control of myoblast fusion by a guanine nucleotide exchange factor, loner, and its effector ARF6. Cell 114:751–762

    CAS  PubMed  Article  Google Scholar 

  11. Ferlito M, Fulton WB, Zauher MA et al (2010) VAMP-1, VAMP-2, and syntaxin-4 regulate ANP release from cardiac myocytes. J Mol Cell Cardiol 49:791–800. doi:10.1016/j.yjmcc.2010.08.020

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  12. Furuta N, Fujita N, Noda T et al (2010) Combinational soluble N-ethylmaleimide-sensitive factor attachment protein receptor proteins VAMP8 and Vti1b mediate fusion of antimicrobial and canonical autophagosomes with lysosomes. Mol Biol Cell 21:1001–1010. doi:10.1091/mbc.E09-08-0693

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  13. Grosshans BL, Ortiz D, Novick P (2006) Rabs and their effectors: achieving specificity in membrane traffic. Proc Natl Acad Sci USA 103:11821–11827. doi:10.1073/pnas.0601617103

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  14. Grounds MD, Shavlakadze T (2011) Growing muscle has different sarcolemmal properties from adult muscle: a proposal with scientific and clinical implications. BioEssays 33:458–468. doi:10.1002/bies.201000136

    CAS  PubMed  Article  Google Scholar 

  15. Hirokawa N, Niwa S, Tanaka Y (2010) Molecular motors in neurons: transport mechanisms and roles in brain function, development, and disease. Neuron 68:610–638. doi:10.1016/j.neuron.2010.09.039

    CAS  PubMed  Article  Google Scholar 

  16. Hong W (2005) SNAREs and traffic. Biochim Biophys Acta 1744:120–144. doi:10.1016/j.bbamcr.2005.03.014

    CAS  PubMed  Article  Google Scholar 

  17. Ishikawa H (1966) Electron microscopic observations of satellite cells with special reference to the development of mammalian skeletal muscles. Z Anat Entwicklungsgesch 125:43–63

    CAS  PubMed  Article  Google Scholar 

  18. Karvar S (2002) Localization and function of soluble N-ethylmaleimide-sensitive factor attachment protein-25 and vesicle-associated membrane protein-2 in functioning gastric parietal cells. J Biol Chem 277:50030–50035. doi:10.1074/jbc.M207694200

    CAS  PubMed  Article  Google Scholar 

  19. Klip A, Sun Y, Chiu TT, Foley KP (2014) Signal transduction meets vesicle traffic: the software and hardware of GLUT4 translocation. AJP Cell Physiol 306:C879–C886. doi:10.1152/ajpcell.00069.2014

    CAS  Article  Google Scholar 

  20. Krauss RS (2010) Regulation of promyogenic signal transduction by cell–cell contact and adhesion. Exp Cell Res 316:3042–3049. doi:10.1016/j.yexcr.2010.05.008

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  21. Liu Y, Sugiura Y, Lin W (2011) The role of synaptobrevin1/VAMP1 in Ca2+-triggered neurotransmitter release at the mouse neuromuscular junction. J Physiol 589:1603–1618. doi:10.1113/jphysiol.2010.201939

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  22. Lu Z, Joseph D, Bugnard E et al (2001) Golgi complex reorganization during muscle differentiation: visualization in living cells and mechanism. Mol Biol Cell 12:795–808

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  23. Martin LB, Shewan A, Millar CA et al (1998) Vesicle-associated membrane protein 2 plays a specific role in the insulin-dependent trafficking of the facilitative glucose transporter GLUT4 in 3T3-L1 adipocytes. J Biol Chem 273:1444–1452. doi:10.1074/jbc.273.3.1444

    CAS  PubMed  Article  Google Scholar 

  24. Matti U, Pattu V, Halimani M et al (2013) Synaptobrevin2 is the v-SNARE required for cytotoxic T-lymphocyte lytic granule fusion. Nat Commun 1:1439. doi:10.1038/ncomms2467

    Article  Google Scholar 

  25. Mauro A (1961) Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol 9:493–495

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  26. McMahon HT, Ushkaryov YA, Edelmann L et al (1993) Cellubrevin is a ubiquitous tetanus-toxin substrate homologous to a putative synaptic vesicle fusion protein. Nature 364:346–349. doi:10.1038/364346a0

    CAS  PubMed  Article  Google Scholar 

  27. Mendez M, Gross KW, Glenn ST et al (2011) Vesicle-associated membrane protein-2 (VAMP2) mediates cAMP-stimulated renin release in mouse juxtaglomerular cells. J Biol Chem 286:28608–28618. doi:10.1074/jbc.M111.225839

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  28. Mizuno-Yamasaki E, Rivera-Molina F, Novick P (2012) GTPase networks in membrane traffic. Annu Rev Biochem 81:637–659. doi:10.1146/annurev-biochem-052810-093700

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  29. Muir AR, Kanji AH, Allbrook D (1965) The structure of the satellite cells in skeletal muscle. J Anat 99:435–444

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Neville C, Rosenthal N, McGrew M et al (1997) Skeletal muscle cultures. Methods Cell Biol 52:85–116

    CAS  PubMed  Article  Google Scholar 

  31. Nori A, Bortoloso E, Frasson F et al (2004) Vesicle budding from endoplasmic reticulum is involved in calsequestrin routing to sarcoplasmic reticulum of skeletal muscles. Biochem J 379:505–512. doi:10.1042/BJ20031875

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  32. Nystuen AM, Schwendinger JK, Sachs AJ et al (2006) A null mutation in VAMP1/synaptobrevin is associated with neurological defects and prewean mortality in the lethal-wasting mouse mutant. Neurogenetics 8:1–10. doi:10.1007/s10048-006-0068-7

    PubMed  Article  Google Scholar 

  33. Paul AC (2001) Muscle length affects the architecture and pattern of innervation differently in leg muscles of mouse, guinea pig, and rabbit compared to those of human and monkey muscles. Anat Rec 262:301–309

    CAS  PubMed  Article  Google Scholar 

  34. Peters C, Miller D, Giovannucci D (2006) Identification, localization and interaction of SNARE proteins in atrial cardiac myocytes. J Mol Cell Cardiol 40:361–374. doi:10.1016/j.yjmcc.2005.12.007

    CAS  PubMed  Article  Google Scholar 

  35. Procino G, Barbieri C, Tamma G et al (2008) AQP2 exocytosis in the renal collecting duct—involvement of SNARE isoforms and the regulatory role of Munc18b. J Cell Sci 121:2097–2106. doi:10.1242/jcs.022210

    CAS  PubMed  Article  Google Scholar 

  36. Regazzi R, Wollheim CB, Lang J et al (1995) VAMP-2 and cellubrevin are expressed in pancreatic beta-cells and are essential for Ca(2 +)-but not for GTP gamma S-induced insulin secretion. EMBO J 14:2723–2730

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Rose AJ, Jeppesen J, Kiens B, Richter EA (2009) Effects of contraction on localization of GLUT4 and v-SNARE isoforms in rat skeletal muscle. Am J Physiol Regul Integr Comp Physiol 297:R1228–R1237. doi:10.1152/ajpregu.00258.2009

    CAS  PubMed  Article  Google Scholar 

  38. Rossetto O, Gorza L, Schiavo G et al (1996) VAMP/synaptobrevin isoforms 1 and 2 are widely and differentially expressed in nonneuronal tissues. J Cell Biol 132:167–179

    CAS  PubMed  Article  Google Scholar 

  39. Rudich A, Klip A (2003) Push/pull mechanisms of GLUT4 traffic in muscle cells. Acta Physiol Scand 178:297–308

    CAS  PubMed  Article  Google Scholar 

  40. Sanes JR, Lichtman JW (2001) Induction, assembly, maturation and maintenance of a postsynaptic apparatus. Nat Rev Neurosci 2:791–805. doi:10.1038/35097557

    CAS  PubMed  Article  Google Scholar 

  41. Sato M, Yoshimura S, Hirai R et al (2011) The role of VAMP7/TI-VAMP in cell polarity and lysosomal exocytosis in vivo. Traffic 12:1383–1393. doi:10.1111/j.1600-0854.2011.01247.x

    CAS  PubMed  Article  Google Scholar 

  42. Schoch S, Deak F, Konigstorfer A et al (2001) SNARE function analyzed in synaptobrevin/VAMP knockout mice. Science 294:1117–1122. doi:10.1126/science.1064335

    CAS  PubMed  Article  Google Scholar 

  43. Schwenk RW, Dirkx E, Coumans WA et al (2010) Requirement for distinct vesicle-associated membrane proteins in insulin- and AMP-activated protein kinase (AMPK)-induced translocation of GLUT4 and CD36 in cultured cardiomyocytes. Diabetologia 53:2209–2219. doi:10.1007/s00125-010-1832-7

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  44. Snow MH (1977) The effects of aging on satellite cells in skeletal muscles of mice and rats. Cell Tissue Res 185:399–408

    CAS  PubMed  Article  Google Scholar 

  45. Steegmaier M, Klumperman J, Foletti DL et al (1999) Vesicle-associated membrane protein 4 is implicated in trans-Golgi network vesicle trafficking. Mol Biol Cell 10:1957–1972

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  46. Tajika Y, Sato M, Murakami T et al (2007) VAMP2 is expressed in muscle satellite cells and up-regulated during muscle regeneration. Cell Tissue Res 328:573–581. doi:10.1007/s00441-006-0376-0

    CAS  PubMed  Article  Google Scholar 

  47. Tajika Y, Murakami T, Sato M et al (2008) VAMP2 is expressed in myogenic cells during rat development. Dev Dyn 237:1886–1892. doi:10.1002/dvdy.21596

    PubMed  Article  Google Scholar 

  48. Tajika Y, Takahashi M, Hino M et al (2010) VAMP2 marks quiescent satellite cells and myotubes, but not activated myoblasts. Acta Histochem Cytochem 43:107–114. doi:10.1267/ahc.10010

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  49. Tajika Y, Takahashi M, Khairani AF et al (2014) Vesicular transport system in myotubes: ultrastructural study and signposting with vesicle-associated membrane proteins. Histochem Cell Biol 141:441–454. doi:10.1007/s00418-013-1164-z

    CAS  PubMed  Article  Google Scholar 

  50. Takahashi M, Tajika Y, Khairani AF et al (2013) The localization of VAMP5 in skeletal and cardiac muscle. Histochem Cell Biol. 139(4):573–582. doi:10.1007/s00418-012-1050-0

    Google Scholar 

  51. Towler MC, Kaufman SJ, Brodsky FM (2004) Membrane traffic in skeletal muscle. Traffic 5:129–139. doi:10.1111/j.1600-0854.2003.00164.x

    CAS  PubMed  Article  Google Scholar 

  52. Trimble WS, Cowan DM, Scheller RH (1988) VAMP-1: a synaptic vesicle-associated integral membrane protein. Proc Natl Acad Sci USA 85:4538–4542

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  53. Volchuk A, Mitsumoto Y, He L et al (1994) Expression of vesicle-associated membrane protein 2 (VAMP-2)/synaptobrevin II and cellubrevin in rat skeletal muscle and in a muscle cell line. Biochem J 304(Pt 1):139–145

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Wang C-C, Ng CP, Shi H et al (2010) A role for VAMP8/endobrevin in surface deployment of the water channel aquaporin 2. Mol Cell Biol 30:333–343. doi:10.1128/MCB.00814-09

    PubMed Central  PubMed  Article  Google Scholar 

  55. Wang P, Howard MD, Zhang H et al (2012) Characterization of VAMP-2 in the lung: implication in lung surfactant secretion. Cell Biol Int 36:785–791. doi:10.1042/CBI20110146

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  56. Weng N, Thomas DDH, Groblewski GE (2007) Pancreatic acinar cells express vesicle-associated membrane protein 2- and 8-specific populations of zymogen granules with distinct and overlapping roles in secretion. J Biol Chem 282:9635–9645. doi:10.1074/jbc.M611108200

    CAS  PubMed  Article  Google Scholar 

  57. Wong SH, Zhang T, Xu Y et al (1998) Endobrevin, a novel synaptobrevin/VAMP-like protein preferentially associated with the early endosome. Mol Biol Cell 9:1549–1563

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  58. Zeng Q, Subramaniam VN, Wong SH et al (1998) A novel synaptobrevin/VAMP homologous protein (VAMP5) is increased during in vitro myogenesis and present in the plasma membrane. Mol Biol Cell 9:2423–2437

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  59. Zhao P, Yang L, Lopez JA et al (2009) Variations in the requirement for v-SNAREs in GLUT4 trafficking in adipocytes. J Cell Sci 122:3472–3480. doi:10.1242/jcs.047449

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgments

We thank Ms. Harumi Matsuda and Mr. Yoshihiro Morimura (Department of Anatomy, Gunma University Graduate School of Medicine) for secretarial assistance. This work was supported by MEXT KAKENHI Grant Number 25860138.

Conflict of interest

None.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yuki Tajika.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tajika, Y., Takahashi, M., Ueno, H. et al. Organization of organelles and VAMP-associated vesicular transport systems in differentiating skeletal muscle cells. Anat Sci Int 90, 33–39 (2015). https://doi.org/10.1007/s12565-014-0266-6

Download citation

Keywords

  • Muscle
  • Myoblast
  • Myotube
  • SNARE protein
  • VAMP