Skip to main content
Log in

Effects of dietary microalgal species and hormone treatment on the lorica size and reproductivity of heavy-ion beam irradiated rotifers

  • Original Article
  • Aquaculture
  • Published:
Fisheries Science Aims and scope Submit manuscript

Abstract

In aquatic seeding production, the feeding regime of fish larvae consists of rotifers to Artemia, while there is a lack of intermediate-sized feed in the range of 350–600 µm. To solve this problem, in our previous study, the euryhaline rotifer Brachionus plicatilis (L-type, Notojima strain) were irradiated with carbon heavy-ion-beams, and large-sized rotifer mutant lines (> 350 µm lorica length) were established. This study aimed to enhance the mutated morphometric characteristics and reproductivity through the combined use of three microalgal species (Nannochloropsis oculata, Tetraselmis tetrathele, and Chlorella vulgaris), and two hormones [juvenile hormone (JH) and gamma-aminobutyric acid (GABA)]. The combination of T. tetrathele and JH was effective in enhancing the mutated phenotype, and the largest lorica length of 344–425 µm was observed with no significant differences in population growth between the wild-type and mutant strains. The combination of N. oculata and GABA enhanced the population growth of the mutant line, and its growth rate was 2.4 times higher than that of the control group (without GABA). This study indicates that the morphometric characteristics and reproductivity of rotifer mutant lines could be regulated by feed and hormone supplementation. These findings can promote the efficient use of mutant rotifer lines in aquaculture facilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anderson DT (1967) Larval development and segment formation in the branchipod crustaceans Limnadia stanleyana King (Conchostraca) and Artemia salina (L.) (Anostraca). Aust J Zool 15:47–91

    Article  CAS  Google Scholar 

  • Assavaaree M, Hagiwara A (2011) Effect of gamma-aminobutyric acid and porcine growth hormone on survival of the euryhaline rotifers Brachionus plicatilis sp. complex preserved at low temperature. Fish Sci 77(4):599-605. https://doi.org/10.1007/s12562-011-0356-5

    Article  CAS  Google Scholar 

  • Cabrera T, Bae JH, Bai SC, Hur SB (2005) Effects of microalgae and salinity on the growth of three types of the rotifer Brachionus plicatilis. Fish Aquat Sci 8:70–75

    Google Scholar 

  • Cheng SH, Kâ S, Kumar R, Kuo C-S, Hwang J-S (2011) Effects of salinity food level and the presence of microcrustacean zooplankters on the population dynamics of rotifer Brachionus rotundiformis. Hydrobiologia 666(1):289–299. https://doi.org/10.1007/s10750-011-0615-6

    Article  CAS  Google Scholar 

  • Dhont J, Dierckens K, Støttrup J, Van SG, Wille M, Sorgeloos P (2013) 5-Rotifers, artemia and copepods as live feeds for fish larvae in aquaculture. In: Allan G, Burnell G (eds) Advances in Aquaculture Hatchery Technology. Woodhead Publishing, Oxford, UK, pp 157–202

    Chapter  Google Scholar 

  • Fernández-Diaz C, Pascual E, Yúfera M (1994) Feeding behaviour and prey size selection of gilthead seabream, Sparus aurata, larvae fed on inert and live food. Mar Biol 118:323–328

    Article  Google Scholar 

  • Fritsch HAR, VanNoorden S, Pearse AG (1976) Cytochemical and immunofluorescence investigations of insulin-like producing cells in the intestine of Mytilus edulis L. (Bivalvia). Cell Tissue Res 165:365–369

    Article  CAS  PubMed  Google Scholar 

  • Fu Y, Hirayama K, Natsukari Y (1991) Morphological differences between two types of the rotifer Brachionus plicatilis O. F. Müller J Exp Mar Biol Ecol 151:29–41

    Article  Google Scholar 

  • Gallardo WG, Hagiwara A, Tomita Y, Soyano K, Snell TW (1997) Effect of some vertebrate and invertebrate hormones on the population growth, mictic female production, and body size of the marine rotifer Brachionus plicatilis Müller. Hydrobiologia 358:113–120

    Article  CAS  Google Scholar 

  • Gallardo WG, Hagiwara A, Tomita Y, Snell TW (1999) Effect of growth hormone and gamma-aminobutyric acid on Brachionus plicatilis (Rotifera) reproduction at low food or high ammonia levels. J Exp Mar Biol Ecol 240:179–191

    Article  CAS  Google Scholar 

  • Gallardo WG, Hagiwara A, Snell TW (2000) GABA enhances reproduction of the rotifer Brachionus plicatilis Muller: application to mass culture. Aquac Res 31:713–718

    Google Scholar 

  • Gallardo WG, Hagiwara A, Hara K, Soyano K (2006) Growth hormone-like substance in the rotifer Brachionus plicatilis. Fish Sci 72(4):781–786. https://doi.org/10.1111/j.1444-2906.2006.01218.x

    Article  CAS  Google Scholar 

  • Hagiwara A, Kotani T, Snell TW, Assava-Aree M, Hirayama K (1995) Morphology, reproduction, genetics, and mating behaviour of small, tropical marine Brachionus strains (Rotifera). J Exp Mar Biol Ecol 194:25–37

    Article  Google Scholar 

  • Hagiwara A, Balompapueng MD, Munuswamy N, Hirayama K (1997) Mass production and preservation of the resting eggs of the euryhaline rotifer Brachionus plicatilis and B. rotundiformis. Aquaculture 155:223–230

    Article  Google Scholar 

  • Hagiwara A, Gallardo WG, Assavaaree M, Kotani T, de Araujo AB (2001) Live food production in Japan: recent progress and future aspects. Aquaculture 200:111–127

    Article  Google Scholar 

  • Hagiwara A, Suga K, Akazawa A, Kotani T, Sakakura Y (2007) Development of rotifer strains with useful traits for rearing fish larvae. Aquaculture 268:44–52

    Article  Google Scholar 

  • Hagiwara A, Wullur S, Marcial HS, Hirai N, Sakakura Y (2014) Euryhaline rotifer Proales similis as initial live food for rearing fish with small mouth. Aquaculture 432:470–474

    Article  Google Scholar 

  • Kennari AA, Ahmadifard N, Kapourchali MF, Seyfabadi J (2008) Effect of two microalgae concentrations on body size and egg size of the rotifer Brachionus calyciflorus. Biologia 63:407–411

    Article  Google Scholar 

  • Kim H-J, Nakamura K, Hagiwara A (2014) Dietary effect of selenium-fortified Chlorella vulgaris on reproduction of Brachionus plicatilis species complex (Rotifera: Monogononta). Int Rev Hydrobiol 99:161–165

    Article  CAS  Google Scholar 

  • Korstad J, Olsen Y, Vadstein O (1989) Life history characteristics of Brachionus plicatilis (Rotifera) fed different algae. Hydrobiologia 186(187):43–50

    Article  Google Scholar 

  • Lubzens E (1987) Raising rotifers for use in aquaculture. Hydrobiologia 147:245–255

    Article  CAS  Google Scholar 

  • Magpusao J, Giteru S, Oey I, Kebede B (2021) Effect of high pressure homogenization on microstructural and rheological properties of A. platensis, Isochrysis Nannochloropsis and Tetraselmis species. Algal Res 56:102327

    Article  Google Scholar 

  • Maruo T, Cohen H, Segal SJ, Koide SS (1979) Production of choriogonadotropin-like factor by a microorganism. Proc Natl Acad Sci USA 76:6622–6626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mills S, Alcántara-Rodríguez JA, Ciros-Pérez J, Gómez A, Hagiwara A, Galindo KH, Jersabek CD, Malekzadeh-Viayeh R, Leasi F, Lee J, Mark Welch DB, Papakostas S, Riss S, Segers H, Serra M, Shiel R, Smolak R, Snell TW, Stelzer C, Tang CQ, Wallace RL, Fontaneto D, Walsh EJ (2017) Fifteen species in one: deciphering the Brachionus plicatilis species complex (Rotifera, Monogononta) through DNA taxonomy. Hydrobiologia 796:39–58

    Article  CAS  Google Scholar 

  • Olsen AI, Attramadal Y, Reitan KI, Olsen Y (2000) Food selection and digestion characteristics of Atlantic halibut (Hippoglossus hippoglossus) larvae fed cultivated prey organisms. Aquaculture 181:293–310

    Article  Google Scholar 

  • Roth J, LeRoith D, Shiloach J, Rosenzweig JL, Lesniak MA, Havrankova J (1982) The evolutionary origins of hormones, neurotransmitters, and other extracellular chemical messengers: implications for mammalian biology. NEJM 306:523–527

    Article  CAS  PubMed  Google Scholar 

  • Roth J, LeRoith D, Collier ES, Weaver NR, Watkinson A, Cleland CF, Glick SM (1985) Evolutionary origins of neuropeptides, hormones and receptors: possible applications to immunology. J Immunol 135(Supplement):816s–819s

    Article  CAS  PubMed  Google Scholar 

  • Rothhaupt KO (1990) Differences in particle size-dependent feeding efficiencies of closely related rotifer species. Limnol Oceanogr 35:16–23

    Article  Google Scholar 

  • Rumengan IFM, Warouw V, Hagiwara A (1998) Morphometry and resting egg production potential of the tropical ultra-minute rotifer Brachionus rotundiformis (Manado strain) fed different algae. Bull Fac Fish Nagasaki Univ 79:31–36

    Google Scholar 

  • Safi C, Zebib B, Merah O, Pontalier P-Y, Vaca-Garcia C (2014) Morphology, composition, production, processing and applications of Chlorella vulgaris: a review. Renew Sustain Energy Rev 35:265–278

    Article  Google Scholar 

  • Serra M, Miracle MR (1987) Biometric variation in three strains of Brachionus plicatilis as a direct response to abiotic variables. Hydrobiologia 147:83–89

    Article  CAS  Google Scholar 

  • Shirota A (1978) Studies on the mouth size of fish larvae-II. Nippon Suisan Gakkaishi 44:1171–1177 ((in Japanese with English abstract))

    Article  Google Scholar 

  • Snell TW, Carrillo K (1984) Body size variation among strains of the rotifer Brachionus plicatilis. Aquaculture 37:359–367

    Article  Google Scholar 

  • Stelzer CP (2002) Phenotypic plasticity of body size at different temperatures in a planktonic rotifer: mechanisms and adaptive significance. Funct Ecol 16:835–841

    Article  Google Scholar 

  • Sugumar V, Munuswamy N (2006) Induction of population growth, mictic female production and body size by treatment of a synthetic GnRH analogue in the freshwater rotifer, Brachionus calyciflorus Pallas. Aquaculture 258:529–534

    Article  CAS  Google Scholar 

  • Sukarni SHN, Yanuhar U, Wardana ING (2014) Potential and properties of marine microalgae Nannochloropsis oculata as biomass fuel feedstock. Int J Energy Environ Eng 5:279–290

    Article  CAS  Google Scholar 

  • Tanaka Y, Sakakura Y, Chuda H, Hagiwara A, Yasumoto S (2005) Food selectivity of seven-band grouper Epinephelus septemfasciatus larvae fed different sizes of rotifers. Nippon Suisan Gakkaishi 71:911–916 ((in Japanese with English abstract))

    Article  Google Scholar 

  • Tsuneizumi K, Yamada M, Kim H-J, Ichida H, Ichinose K, Sakakura Y, Suga K, Hagiwara A, Kawata M, Katayama T, Tezuka N, Kobayashi T, Koiso M, Abe T (2021) Application of heavy-ion-beam irradiation to breeding large rotifer. Biosci Biotechnol Biochem 85:703–713

    Article  PubMed  Google Scholar 

  • Xi Y-L, Liu G-Y, Jin H-J (2002) Population growth, body size, and egg size of two different strains of Brachionus calyciflorus Pallas (Rotifera) fed different algae. J Freshw Ecol 17:185–190

    Article  Google Scholar 

  • Yin XW, Zhao W (2008) Studies on life history characteristics of Brachionus plicatilis O.F. Müller (Rotifera) in relation to temperature, salinity and food algae. Aquat Ecol 42:165–176

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Japan Fisheries Agency (JFA) and JSPS KAKENHI grant numbers JP17H03862, JP20H03063, and JP20K21340 to A.H.. The authors would like to express our sincere gratitude to all the contributors improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hee-Jin Kim.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised to delete data availability statement.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, HJ., Nakamura, K., Sakakura, Y. et al. Effects of dietary microalgal species and hormone treatment on the lorica size and reproductivity of heavy-ion beam irradiated rotifers. Fish Sci 89, 61–69 (2023). https://doi.org/10.1007/s12562-022-01652-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12562-022-01652-8

Keywords

Navigation