Skip to main content
Log in

Comparison of resting egg gene expression with different hatchability related to salinity variations in the marine rotifer Brachionus manjavacas

  • Original Article
  • Biology
  • Published:
Fisheries Science Aims and scope Submit manuscript

Abstract

Salinity is a significant factor in affecting resting egg hatching in the euryhaline rotifers. In order to clarify the effects of salinity on resting egg hatchability, this study investigated gene expressions of resting eggs subjected to two different incubation salinities (at 17 and 33 ppt) in the rotifer Brachionus manjavacas. The resting eggs formed at 17 ppt showed a higher hatching rate at 17 ppt incubation salinity, compared to those at 33 ppt. Related to these circumstances, the resting eggs incubated at 17 ppt expressed genes which have putative functions implying cellular differentiation and embryonic development: late embryogenesis abundant protein (LEAs-1), α-amylase, and deaminase. The resting eggs incubated at 33 ppt highly expressed the genes related to the environmental stresses: AP2 transcription factors (AP2TF), and ATP decomposition: ABC transporter permease (ABC-TP), NAD + synthase, copper-translocating P-type ATPase (CTP-ATPase). It is expected that the resting eggs incubated at 33 ppt may need more energy (ATP) to endure saline stress during incubation. The obtained results indicated that the resting eggs regulate their hatching by allocating energy between embryo development and self-defense against environmental conditions like salinity stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abogadallah GM, Nada RM, Malinowski R, Quick P (2011) Overexpression of HARDY, an AP2/ERF gene from Arabidopsis, improves drought and salt tolerance by reducing transpiration and sodium uptake in transgenic Trifolium alexandrinum L. Planta 233:1265–1276

    Article  PubMed  CAS  Google Scholar 

  • Bahnson BJ, Anderson VE, Petsko GA (2002) Structural mechanism of enoyl-CoA hydratase: three atoms from a single water are added in either an E1cb stepwise or concerted fashion. Biochemistry 41:2621–2629

    Article  PubMed  CAS  Google Scholar 

  • Berjak P, Pammenter NW, Adkins SW, Ashmore S, Navie SC (2007) Recent progress towards the understanding of desiccation tolerance. Seeds: biology, development and ecology. Cabi Publishing-CAB Int, Wallingford, pp 17–27

    Google Scholar 

  • Cao H, Sekiya M, Erikci M, Burak MF, Mayers JR, White A, Inouye K, Rickey LM, Ercal BC, Furuhashi M, Tuncman G, Hotamisligil GS (2013) Adipocyte lipid chaperone aP2 is a secreted adipokine regulating hepatic glucose production. Cell Metab 17:768–778

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chinnery FE, Williams JA (2004) The influence of temperature and salinity on Acartia (Copepoda: Calanoida) nauplii survival. Mar Biol 145:733–738

    Google Scholar 

  • Clark MS, Denekamp NY, Thorne MAS, Richard R, Mario D, Albrecht MW (2012) Long-term survival of hydrated resting eggs from Brachionus plicatilis. PLoS ONE 7:e293-65

    Article  CAS  Google Scholar 

  • Demontis S, Terao M, Brivio M, Zanotta S, Bruschi M, Garattini E (1999) Isolation and characterization of the gene coding for human cytidine deaminase. Biochim Biophys Acta 1443:323–333

    Article  Google Scholar 

  • Devreker D, Souissi S, Winkler G, Leboulenger F (2009) Effects of salinity, temperature and individual variability on the reproduction of Eurytemora affinis (Copepoda; Calanoida) from the Seine estuary: a laboratory study. J Exp Mar Biol Ecol 368:113–123

    Article  Google Scholar 

  • Galau GA, Hughes DW, Dure L (1986) Abscisic acid induction of cloned cotton late embryogenesis-abundant (Lea) mRNAs. Plant Mol Biol 7:155–170

    Article  PubMed  CAS  Google Scholar 

  • Gautam A, Liu HW (2003) Enoyl-Coa hydratase: Reaction, mechanism, and inhibition. Bioorg Med Chem 11:9–20

    Article  Google Scholar 

  • Gilbert JJ (2003) Environmental and endogenous control of sexuality in a rotifer lifecycle: developmental and population biology. Evol Dev 5:19–24

    Article  PubMed  Google Scholar 

  • Hagiwara A, Hino A (1990) Feeding history and hatching of resting eggs in the marine rotifer Brachionus plicatilis. Nippon Suisan Gakkaishi 56:1965–1971

    Article  Google Scholar 

  • Hagiwara A, Hoshi N, Kawahara F, Tominaga K, Hirayama K (1995) Resting eggs of the marine rotifer Brachionus plicatilis Müller: development, and effect of irradiation on hatching. Hydrobiologia 313:223–229

    Article  Google Scholar 

  • Henze K, Martin W (2003) Evolutionary biology: essence of mitochondria. Nature 426:127–128

    Article  PubMed  CAS  Google Scholar 

  • Inesi G, Pilankatta R, Tadinibuoninsegni F (2014) Biochemical characterization of P-type copper ATPases. Biochem J 463:167–176

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • John JG (2016) Resting-egg hatching and early population development in rotifers: a review and a hypothesis for differences between shallow and deep waters. Hydrobiologia 186:1–9

    Google Scholar 

  • Kim HJ, Hagiwara A (2011a) Effect of female aging on the morphology and hatchability of resting eggs in the rotifer Brachionus plicatilis Müller. Hydrobiologia 662:107–111

    Article  Google Scholar 

  • Kim HJ, Hagiwara A (2011b) Effect of salinity during resting egg formation and hatching on descendent reproduction in the rotifer Brachionus rotundiformis Tschugunof. J Plankton Res 33:1033–1042

    Article  Google Scholar 

  • Kim RO, Rhee JS, Won EJ, Lee KW, Kang CM, Lee YM, Lee JS (2011) Ultraviolet B retards growth, induces oxidative stress, and modulates DNA repair-related gene and heat shock protein gene expression in the monogonont rotifer, Brachionus sp. Aquat Toxicol 101:529–539

    Article  PubMed  CAS  Google Scholar 

  • Kim RO, Kim BM, Jeong CB, Nelson DR, Lee JS, Rhee JS (2013) Expression pattern of entire cytochrome P450 genes and response of defensomes in the benzo [a] pyrene-exposed monogonont rotifer Brachionus koreanus. Environ Sci Technol 47:13804–13812

    Article  PubMed  CAS  Google Scholar 

  • Kim BM, Lee JW, Seo JS, Shin KH, Rhee JS, Lee JS (2014a) Modulated expression and enzymatic activity of the monogonont rotifer Brachionus koreanus Cu/Zn- and Mn-superoxide dismutase (SOD) in response to environmental biocides. Chemosphere 120:470–478

    Article  PubMed  CAS  Google Scholar 

  • Kim HJ, Sawada C, Rhee JS, Lee JS, Suga K, Hagiwara A (2014b) Nutritional effects on the visual system of the rotifer Brachionus plicatilis sensu stricto (Rotifera: Monogononta). J Exp Mar Biol Ecol 460:177–183

    Article  Google Scholar 

  • Kim HJ, Suga K, Kim BM, Rhee JS, Lee JS, Hagiwara A (2015) Light-dependent transcriptional events during resting egg hatching of the rotifer Brachionus manjavacas. Mar Genom 20:25–31

    Article  Google Scholar 

  • Kuhn K, Bertling WM, Emmrich F (1993) Cloning of a functional cDNA for human cytidine deaminase (CDD) and its use as a marker of monocyte/macrophage differentiation. Biochem Biophys Res Commun 190:1–7

    Article  PubMed  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real time quantitative PCR and the 2−ΔΔCt method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Lowe CD, Kemp SJ, Bates AD, Montagness DJS (2005) Evidence that the rotifer Brachionus plicatili is not an osmoconformer. Mar Biol 146:923–929

    Article  Google Scholar 

  • Lubzens E, Fishler R, White VB (1980) Induction of sexual reproduction and resting egg production in Brachionus plicatilis reared in sea water. Hydrobiologia 73:55–58

    Article  Google Scholar 

  • McBride HM, Neuspiel M, Wasiak S (2006) Mitochondria: more than just a powerhouse. Curr Biol 16:551–560

    Article  CAS  Google Scholar 

  • Michalec EG, Souissi S, Dur G, Mahjoub MS, Schmitt FG, Hwang JS (2010) Differences in behavioral responses of Eurytemora affinis (Copepoda, Calanoida) reproductive stages to salinity variations. J Plankton Res 32:805–813

    Article  Google Scholar 

  • Pourriot R, Snell T (1983) Resting eggs in rotifers. Hydrobiologia 104:213–224

    Article  Google Scholar 

  • Rhee JS, Kim RO, Choi HG, Lee J, Lee YM, Lee JS (2011) Molecular and biochemical modulation of heat shock protein 20 (Hsp20) gene by temperature stress and hydrogen peroxide (H2O2) in the monogonont rotifer, Brachionus sp. Comp Biochem Physiol C 154:19–27

    Google Scholar 

  • Sakuma Y, Maruyama K, Qin F, Osakabe Y, Shinozaki K, Yamaguchi-Shinozaki K (2006) Dual function of an Arabidopsis transcription factor DREB2A in water-stress-responsive and heat-stress-responsive gene expression. Proc Natl Acad Sci USA 103:18822–18827

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Snell TW (1987) Sex, population dynamics and resting egg production in rotifers. Hydrobiologia 144:105–111

    Article  Google Scholar 

  • Stedman TL (2000) Stedman’s medical dictionary. 27th edn. Lippincott Williams and Wilkins. Baltimore, Maryland, USA, p 65

    Google Scholar 

  • Thorpe C, Kim JJ (1995) Structure and mechanism of action of the acyl-CoA dehydrogenases. Faseb J Off Publ Fed Am Soc Exp Biol 9:718–725

    CAS  Google Scholar 

  • Tunnacliffe A, Hincha DK, Leprince O, Macherel D (2010) LEA proteins: versatility of form and function. In: Lubzens E, Cerda J, Clark M (eds) Sleeping beauties: dormancy and resistance in harsh environments. Springer, Berlin, pp 91–108

    Chapter  Google Scholar 

  • Wheelock CE, Wolfe MF, Olsen H, Tjeerdema RS, Sowby ML (1999) Hsp60-induced tolerance in the rotifer Brachionus plicatilis exposed to multiple environmental contaminants. Arch Environ Contam Toxicol 36:281–367

    Article  PubMed  CAS  Google Scholar 

  • Wolanin PW, Thomason PA, Stock JB (2002) Histidine protein kinases: key signal transducers outside the animal kingdom. Genome Biol 3:3013.1–3013.8

    Article  Google Scholar 

  • Yang T, Zhang L, Zhang T, Zhang H, Xu S, An L (2005) Transcriptional regulation network of cold-responsive genes in higher plants. Plant Sci 169:987–995

    Article  CAS  Google Scholar 

  • Zhu Q, Zhang J, Gao X, Tong J, Xiao L, Li W, Zhang H (2010) The Arabidopsis AP2/ERF transcription factor RAP2. 6 participates in ABA, salt and osmotic stress responses. Gene 457:1–12

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by JSPS KAKENHI Grant Number JP17H03862 and 15K14791 to Atsushi Hagiwara. The authors deeply appreciate the comments and suggestions from Dr. Helen Marcial and the anonymous reviewers who greatly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hee-Jin Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, C., Kim, HJ., Suga, K. et al. Comparison of resting egg gene expression with different hatchability related to salinity variations in the marine rotifer Brachionus manjavacas. Fish Sci 84, 663–669 (2018). https://doi.org/10.1007/s12562-018-1213-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12562-018-1213-6

Keywords

Navigation