Skip to main content
Log in

Sequence analysis and expression patterns of opsin genes in the longtooth grouper Epinephelus bruneus

  • Original Article
  • Biology
  • Published:
Fisheries Science Aims and scope Submit manuscript

Abstract

Here, to evaluate ontogenic changes in visual sensitivity in juvenile longtooth grouper Epinephelus bruneus, we investigated opsin gene sequences and expression in larvae and juveniles. The longtooth grouper has 10 opsin genes: Rh1, five Rh2 genes (Rh2A1-1, Rh2A1-2, Rh2A2, g6738, and g6740), SWS1, two SWS2 genes (SWS2A1 and SWS2A2), and LWS. To date, five or six Rh2 opsin genes have been reported in perciform fishes. Differential opsin gene expression was examined by RT-PCR; the results suggested that switching from SWS1 to SWS2 occurs during early development, and that there is an absence of LWS expression between 14 and 40 days post-hatch. These ontogenetic changes in opsin gene expression may correspond to different requirements at different life stages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Heemstra PC, Randall JE (1993) FAO species catalogue. Groupers of the world (Family Serranidae, Subfamily Epinephelinae). An annotated and illustrated catalogue of the grouper, rockcod, hind, coral grouper and lyretail species known to date. FAO Fisheries Synopsis no. 125. FAO, Rome, 16:1–382

  2. Thierry C, Sadovy Y, To AWL (2008) The IUCN Red List of Threatened Species, version 2015.2. IUCN, Gland. http://www.iucnredlist.org. Accessed on 29 July 2015

  3. Teruya K, Yoseda K (2006) Successful mass production of early-stage larvae of kelp grouper Epinephelus bruneus in improved rearing conditions. Suisanzoshoku 54:187–194

    Google Scholar 

  4. Loew ER, Lythgoe JN (1978) The ecology of cone pigments in teleost fishes. Vis Res 18:715–722

    Article  PubMed  CAS  Google Scholar 

  5. Lythgoe JN (1979) The ecology of vision. Oxford University, New York, p 244

  6. Partridge JC, Shand J, Archer SN, Lythgoe JN, van Groningen-Luyben WAHM (1989) Interspecific variation in the visual pigments of deep-sea fishes. J Comp Physiol A 164:513–529

    Article  PubMed  CAS  Google Scholar 

  7. Bowmaker JK (1995) The visual pigments of fish. Prog Retin Eye Res 15:1–31

    Article  Google Scholar 

  8. Hart NS (2001) The visual ecology of avian photoreceptors. Prog Retin Eye Res 20:675–703

    Article  PubMed  CAS  Google Scholar 

  9. Wang FY, Yan HY, Chen JS-C, Wang TY, Wang D (2009) Adaptation of visual spectra and opsin genes in seabreams. Vis Res 49:1860–1868

    Article  PubMed  Google Scholar 

  10. Kobayashi H (1962) A comparative study on electroretinogram in fish, with spectral reference to ecological aspects. J Shimonoseki Coll Fish 11:17–148

    Google Scholar 

  11. Munz FW, McFarland WN (1977) Evolutionary adaptations of fishes to the photic environment. In: Autrum H et al (eds) Handbook of sensory physiology, vol VII/5. Springer, New York, pp 193–274

    Google Scholar 

  12. Lythgoe JN (1988) Light and vision in the aquatic environment. In: Atema J et al (eds) Sensory biology of aquatic animals. Springer, New York, pp 57–82

  13. Yokoyama S (1999) Adaptive evolution of color vision of the Comoran coelacanth (Latimeria chalumnae). Proc Natl Acad Sci USA 96:6279–6284

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Yokoyama S (2000) Color vision of the coelacanth (Latimeria chalumnae) and adaptive evolution of rhodopsin (RH1) and rhodopsin-like (RH2) pigments. J Hered 91:215–220

    Article  PubMed  CAS  Google Scholar 

  15. Yokoyama S, Shi Y (2000) Genetics and evolution of ultraviolet vision in vertebrates. FEBS Lett 486:167–172

    Article  PubMed  CAS  Google Scholar 

  16. Yokoyama S, Tada T (2000) Adaptive evolution of the African and Indonesian coelacanths to deep-sea environments. Gene 261:35–42

    Article  PubMed  CAS  Google Scholar 

  17. Cowing JA (2002) Spectral tuning and evolution of short wave-sensitive cone pigments in cottoid fish from Lake Baikal. Biochemistry 41:6019–6025

    Article  PubMed  CAS  Google Scholar 

  18. Sugawara T, Terai Y, Okada N (2002) Natural selection of the rhodopsin gene during the adaptive radiation of East African Great Lakes cichlid fishes. Mol Biol Evol 19:1807–1811

    Article  PubMed  CAS  Google Scholar 

  19. Dann SG, Allison TW, Levin DB, Taylor JS, Hawryshyn CW (2004) Salmonid opsin sequences undergo positive selection and indicate an alternate evolutionary relationship in Oncorhynchus. J Mol Evol 58:400–412

    Article  PubMed  CAS  Google Scholar 

  20. Seehausen O, Terai Y, Magalhaes IS, Carleton KL, Mrosso HDJ, Miyagi R, van der Sluijs I, Schneider MV, Maan ME, Tachida H, Imai H, Okada N (2008) Speciation through sensory drive in cichlid fish. Nature 455:620–626

    Article  PubMed  CAS  Google Scholar 

  21. Carleton KL, Kocher TD (2001) Cone opsin genes of African cichlid fishes: tuning spectral sensitivity by differential gene expression. Mol Biol Evol 18:1540–1550

    Article  PubMed  CAS  Google Scholar 

  22. Cheng CL, Novales Flamarique I (2004) Opsin expression: new mechanism for modulating colour vision. Nature 428:279

    Article  PubMed  CAS  Google Scholar 

  23. Cheng CL, Novales Flamarique I (2007) Chromatic organization of cone photoreceptors in the retina of rainbow trout: single cones irreversibly switch from UV (SWS1) to blue (SWS2) light sensitive opsin during natural development. J Exp Biol 210:4123–4135

    Article  PubMed  CAS  Google Scholar 

  24. Cheng CL, Novales-Flamarique I, Harosi FI, Rickers-Haunerland J, Haunerland NH (2006) Photoreceptor layer of salmonid fishes: transformation and loss of single cones in juvenile fish. J Comp Neurol 495:213–235

    Article  PubMed  Google Scholar 

  25. Shand J, Davies WL, Thomas N, Balmer L, Cowing JA, Pointer M, Carvalho LS, Trezise AEO, Collin SP, Beazley LD, Hunt DM (2008) The influence of ontogeny and light environment on the expression of visual pigment opsins in the retina of the black bream, Acanthopagrus butcheri. J Exp Biol 211:1495–1503

    Article  PubMed  CAS  Google Scholar 

  26. Shao YT, Shao YT, Wang FY, Fu WC, Yan HY, Anraku K, Chen IS, Borg B (2014) Androgens increase lws opsin expression and red sensitivity in male three-spined sticklebacks. PLoS One 9:e100330

    Article  PubMed  PubMed Central  Google Scholar 

  27. Suliman T, Novales Flamarique I (2014) Visual pigments and opsin expression in the juveniles of three species of fish (rainbow trout, zebrafish, and killifish) following prolonged exposure to thyroid hormone or retinoic acid. J Comp Neurol 522:98–117

    Article  PubMed  CAS  Google Scholar 

  28. Ishibashi Y, Honryo T, Saida K, Hagiwara A, Miyashita S, Sawada Y, Okada T, Kurata M (2009) Artificial lighting prevents high night-time mortality of juvenile Pacific bluefin tuna, Thunnus orientalis, caused by poor scotopic vision. Aquaculture 293:157–163

    Article  Google Scholar 

  29. Ishibashi Y, Honryo T, Miyashita S, Oda S (2013) Suitable photoperiod and light intensity of laboratory-reared juvenile Pacific bluefin tuna Thunnus orientalis. Aquac Sci 61:399–402

    CAS  Google Scholar 

  30. Honryo T, Okada T, Kurata M, Tamura T, Ishibashi Y (2014) Optimal periods of night-time lighting in the sea cage culture of Pacific bluefin tuna, Thunnus orientalis, juvenile (Temminck and Schlegel). Aquac Res 45:1109–1115

    Article  Google Scholar 

  31. Miyazaki T, Kohbara J, Takii K, Ishibashi Y, Kumai H (2008) Three cone opsin genes and cone cell arrangement in retina of juvenile Pacific bluefin tuna Thunnus orientalis. Fish Sci 74:314–321

    Article  CAS  Google Scholar 

  32. Matsumoto T, Ihara H, Ishida Y, Okada T, Kurata M, Sawada Y, Ishibashi Y (2009) Electroretinographic analysis of night vision in juvenile Pacific bluefin tuna (Thunnus orientalis). Biol Bull 217:142–150

    PubMed  Google Scholar 

  33. Matsumoto T, Okada T, Sawada Y, Ishibashi Y (2011) Changes in the scotopic vision of juvenile Pacific bluefin tuna (Thunnus orientalis) with growth. Fish Physiol Biochem 37:693–700

    Article  PubMed  CAS  Google Scholar 

  34. Matsumoto T, Okada T, Sawada Y, Ishibashi Y (2012) Visual spectral sensitivity of photopic juvenile Pacific bluefin tuna (Thunnus orientalis). Fish Physiol Biochem 38:911–917

    Article  PubMed  CAS  Google Scholar 

  35. Tsutsumi Y, Matsumoto T, Honryo T, Agawa Y, Sawada Y, Ishibashi Y (2014) Effects of light wavelength on growth and survival rate in juvenile Pacific bluefin tuna, Thunnus orientalis. Environ Biol Fish 97:53–58

    Article  Google Scholar 

  36. Spady TC, Parry JWL, Robinson PR, Hunt DM, Bowmaker JK, Carleton KL (2006) Evolution of the cichlid visual palette through ontogenetic subfunctionalization of the opsin gene arrays. Mol Biol Evol 23:1538–1547

    Article  PubMed  CAS  Google Scholar 

  37. Carleton KL, Spady TC, Streelman JT, Kidd MR, McFarland WN, Loew ER (2008) Visual sensitivities tuned by heterochronic shifts in opsin gene expression. BMC Biol 6:22

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Ishibashi Y, Inoue K, Nakatsukasa H, Ishitani Y, Miyashita S, Murata O (2005) Ontogeny of tolerance to hypoxia and oxygen consumption of larval and juvenile red sea bream, Pagrus major. Aquaculture 244:331–340

  39. Ishibashi Y, Kotaki T, Yamada Y, Ohta H (2007) Ontogenic changes in tolerance to hypoxia and energy metabolism of larval and juvenile Japanese flounder Paralichthys olivaceus. J Exp Mar Biol Ecol 352:42–49

    Article  Google Scholar 

  40. Metcalfe JD, Craig JF (2011) Ethical justification for the use and treatment of fishes in research: an update. J Fish Biol 78:393–394

    Article  PubMed  CAS  Google Scholar 

  41. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Zuckerkandl E, Pauling L (1965) Evolutionary divergence and convergence in proteins. In: Bryson V et al (eds) Evolving genes and proteins. Academic, New York, pp 97–166

    Google Scholar 

  43. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular Evolutionary Genetics Analysis, version 6.0. Mol Biol Evol 30:2725–2729

  44. Harikrishnan R, Kim J-S, Jang I-S, Kim M-C, Balasundaram C, Heo M-S (2011) Molecular characterization and tissue distribution of ferritin M in kelp grouper, Epinephelus bruneus. J Biosci Bioeng 112:541–544

    Article  PubMed  CAS  Google Scholar 

  45. Nakamura Y, Mori K, Saitoh K, Oshima K, Mekuchi M, Sugaya T, Shigenobu Y, Ojima N, Muta S, Fujiwara A, Yasuike M, Oohara I, Hirakawa H, Chowdhury VS, Kobayashi T, Nakajima K, Sano M, Wada T, Tashiro K, Ikeo K, Hattori M, Kuhara S, Gojobori T, Inouye K (2013) Evolutionary changes of multiple visual pigment genes in the complete genome of Pacific bluefin tuna. Proc Natl Acad Sci USA 110:11061–11066

    Article  PubMed  PubMed Central  Google Scholar 

  46. Yokoyama S (2008) Evolution of dim-light and color vision pigments. Annu Rev Genomics Hum Genet 9:259–282

    Article  PubMed  CAS  Google Scholar 

  47. Hofmann CM, Marshall NJ, Abdilleh K, Patel Z, Siebeck UE, Carleton KL (2012) Opsin evolution in damselfish: convergence, reversal, and parallel evolution across tuning sites. J Mol Evol 75:79–91

    Article  PubMed  CAS  Google Scholar 

  48. Matsumoto T, Agawa Y, Okada T, Sawada Y, Ishibashi Y (2015) Opsin gene analysis in the cultured kawakawa Euthynnus affinis. Aquaculture Sci 63:179–189

    Google Scholar 

  49. Bayliss LE, Lythgoe RJ, Tansley K (1936) Some new forms of visual purple found in sea fishes with a note on the visual cells of origin. Proc R Soc Lond B 120:95–113

    Article  CAS  Google Scholar 

  50. Clarke GL (1936) On the depth at which fish can see. Ecology 17:452–456

    Article  Google Scholar 

  51. Lythgoe JN (1968) Visual pigments and visual range underwater. Vis Res 8:997–1011

    Article  PubMed  CAS  Google Scholar 

  52. Jerlov NG (1976) Marine optics. Elsevier, Amsterdam

    Google Scholar 

  53. Novales Flamarique I, Cheng CL, Bergstrom C, Reimchen TE (2013) Pronounced heritable variation and limited phenotypic plasticity in visual pigments and opsin expression of threespine stickleback photoreceptors. J Exp Biol 216:656–667

    Article  CAS  Google Scholar 

  54. Barry M (1978) Behavioral response of yellowfin tuna, Thunnus albacares, and kawakawa, Euthynnus affinis, to turbidity. Southwest Fisheries Center administrative report 1H. NOAA-NMFS, Honolulu, p 11

  55. Smith RC, Baker KS (1981) Optical properties of the clearest natural waters (200–800 m). Appl Opt 20:177–184

  56. Loew ER, McFarland WN (1990) The underwater visual environment. In: Douglas RH et al (eds) The visual system of fish. Chapman and Hall, New York, pp 1–43

    Chapter  Google Scholar 

  57. Britt LL, Loew ER, McFarland WN (2001) Visual pigments in the early life stages of Pacific Northwest marine fishes. J Exp Biol 204:2581–2587

    PubMed  CAS  Google Scholar 

  58. Forsell J, Ekstrom P, Novales Flamarique I, Holmqvist B (2001) Expression pattern of pineal ultraviolet- and green-like opsins in the pineal organ and retina of teleosts. J Exp Biol 204:2517–2525

    PubMed  CAS  Google Scholar 

  59. Helvik JV, Drivenes Ø, Næss TH, Fjose A, Seo H-C (2001) Molecular cloning and characterization of five opsin genes from the marine flatfish Atlantic halibut (Hippoglossus hippoglossus). Vis Neurosci 18:767–780

    Article  PubMed  CAS  Google Scholar 

  60. McFarland WN, Loew ER (1994) Ultraviolet visual pigments in marine fishes of the family Pomacentridae. Vis Res 34:1393–1396

    Article  PubMed  CAS  Google Scholar 

  61. Hawryshyn CW, Moyer HD, Allison WT, Haimberger TJ, McFarland WN (2003) Multidimensional polarization sensitivity in damselfishes. J Comp Physiol A 189:213–220

    CAS  Google Scholar 

  62. Losey GS, McFarland WN, Loew ER, Zamzow JP, Nelson PA, Marshall NJ (2003) Visual biology of Hawaiian coral reef fishes. I. Ocular transmission and visual pigments. Copeia 3:433–454

    Google Scholar 

  63. Avery JA, Bowmaker JK, Djamgoz MBA, Downing JEG (1983) Ultraviolet sensitive receptors in a freshwater fish. J Physiol (Lond) 334:23P–24P

  64. Harosi FI, Hashimoto Y (1983) Ultraviolet visual pigment in a vertebrate: a tetrachromatic cone system in the dace. Science 222:1021–1023

    Article  PubMed  CAS  Google Scholar 

  65. Hashimoto Y, Harosi FI, Ueki K, Fukurotani K (1988) Ultraviolet-sensitive cones in the color-coding systems of cyprinid retinas. Neurosci Res Suppl 8:S81–S95

  66. Bowmaker JK, Thorpe A, Douglas RH (1991) Ultraviolet-sensitive cones in the goldfish. Vis Res 31:349–352

    Article  PubMed  CAS  Google Scholar 

  67. Hawryshyn CW, Harosi FI (1991) Ultraviolet photoreception in carp: microspectrophotometry and behaviourally determined action spectra. Vis Res 31:567–576

    Article  PubMed  CAS  Google Scholar 

  68. Palacios AG, Goldsmith TH, Bernard GD (1996) Sensitivity of cones from a cyprinid fish (Danio aequipinnatus) to ultraviolet and visible light. Vis Neurosci 13:411–421

    Article  PubMed  CAS  Google Scholar 

  69. Kunz YW (1987) Tracts of putative ultraviolet receptors in the retina of the two-year-old brown trout (Salmo trutta) and the Atlantic salmon (Salmo salar). Experientia 43:1202–1204

    Article  PubMed  CAS  Google Scholar 

  70. Hawryshyn CW, Arnold MG, Chaisson DJ, Martin PC (1989) The ontogeny of ultraviolet photosensitivity in rainbow trout (Salmo gairdneri). Vis Neurosci 2:247–254

    Article  PubMed  CAS  Google Scholar 

  71. Thorpe A, Douglas RH (1993) Spectral transmission and short-wave absorbing pigments in the fish lens. II. Effects of age. Vis Res 33:301–307

  72. Sawada Y, Kato K, Okada T, Kurata M, Mukai Y, Miyashita S, Murata O, Kumai H (1999) Growth and morphological development of larval and juvenile Epinephelus bruneus (Perciformes: Serranidae). Ichthyol Res 46:245–257

    Article  Google Scholar 

  73. Cowing JA, Poopalasundaram S, Wilkie SE, Robinson PR, Bowmaker JK, Hunt DM (2002) The molecular mechanism for the spectral shifts between vertebrate ultraviolet-and violet-sensitive cone visual pigments. Biochem J 367:129–135

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Neumeyer C (1985) An ultraviolet receptor as a fourth receptor type in goldfish colour vision. Naturwissenschaften 72:162–163

    Article  Google Scholar 

  75. Neumeyer C (1986) Wavelength discrimination in gold fish. J Comp Physiol A 158:203–213

    Article  Google Scholar 

  76. Neumeyer C (1992) Tetrachromatic color vision in goldfish: evidence from color mixture experiments. J Comp Physiol A 171:639–649

    Article  Google Scholar 

  77. Fratzer C, Dörr S, Neumeyer C (1994) Wavelength discrimination of the goldfish in the ultraviolet spectral range. Vis Res 34:1515–1520

    Article  PubMed  CAS  Google Scholar 

  78. Hawryshyn CW (2010) Ultraviolet polarization vision and visually guided behavior in fishes. Brain Behav Evol 75:186–194

    Article  PubMed  Google Scholar 

  79. Browman HI, Novales-Flamarique I, Hawryshyn CW (1994) Ultraviolet photoreception contributes to prey search behaviour in two species of zooplanktivorous fishes. J Exp Biol 186:187–198

    Google Scholar 

  80. Novales Flamarique I (2013) Opsin switch reveals function of the ultraviolet cone in fish foraging. Proc R Soc Lond B 280:20122490

    Article  Google Scholar 

  81. Rick IP, Bloemker D, Bakker TCM (2012) Spectral composition and visual foraging in the three-spined stickleback (Gasterosteidae: Gasterosteus aculeatus L.): elucidating the role of ultraviolet wavelengths. Biol J Linn Soc 105:359–368

    Article  Google Scholar 

  82. Bellingham J, Tarttelin EE, Foster RG, Wells DJ (2003) Structure and evolution of the teleost extraretinal rod-like opsin (errlo) and ocular rod opsin (rho) genes: is teleost rho a retrogene? J Exp Zool 297B:1–10

  83. Neafsey DE, Hartl DL (2005) Convergent loss of an anciently duplicated, functionally divergent RH2 opsin gene in the fugu and Tetraodon pufferfish lineages. Gene 350:161–171

    Article  PubMed  CAS  Google Scholar 

  84. Matsumoto T, Ishibashi Y (2015) Electroretinographic evaluation and SWS1 opsin gene expression in the vision of juvenile longtooth grouper Epinephelus bruneus (Bloch, 1793). Mar Fresh Behav Physiol. doi:10.1080/10236244.2015.1078100

Download references

Acknowledgments

We are grateful to the students of the Department of Fisheries and the Graduate School of Agriculture, Kinki University, for their assistance during the experiment. This study was supported, in part, by the Japan Society for the Promotion of Science (JSPS), KAKENHI grant number 26450271, and a Strategic Research Foundation Grant-aided Project for Private Universities from the Ministry of Education, Culture, Sport, Science, and Technology, Japan (MEXT), 2014–2016 (S1412003). This research complied with the current laws in Japan and the Ethical Justification for the Use and Treatment of Fishes in Research: an Update [40].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasunori Ishibashi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 78 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsumoto, T., Ishibashi, Y. Sequence analysis and expression patterns of opsin genes in the longtooth grouper Epinephelus bruneus . Fish Sci 82, 17–27 (2016). https://doi.org/10.1007/s12562-015-0936-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12562-015-0936-x

Keywords

Navigation