Skip to main content
Log in

Myosin and actin denaturation in frozen stored kuruma prawn Marsupenaeus japonicus myofibrils

  • Original Article
  • Food Science and Technology
  • Published:
Fisheries Science Aims and scope Submit manuscript

Abstract

Myosin and actin denaturation in kuruma prawn myofibrils stored frozen (0.1 M NaCl, pH 7.5) at −20 °C was investigated. The inactivation profile of Ca2+-ATPase in the myofibrils was identical to that for myosin, indicating that myosin in myofibrils was not protected by actin. The presence of myosin detached from actin in the soluble fraction was proven by ammonium sulfate fractionation in the absence and presence of Mg-ATP. Actin denaturation in myofibrils was further confirmed by its increased susceptibility to chymotryptic degradation. In the frozen myofibrils, actin denatured more rapidly quicker than myosin: actin had completely denatured by storage day 1, followed by a gradual denaturation of myosin. Both myosin and actin in the frozen stored myofibrils retained their high salt-solubility, which decreased slowly during the frozen storage period. The presence of aggregated inactivated myosin in the salt-soluble fraction was proven by precipitation at 40 % saturation of ammonium sulfate in the presence of Mg-ATP, leaving active monomeric myosin in the soluble fraction. Almost no actin denaturation was observed with heated myofibrils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gillett R (2008) Global study of shrimp fisheries. FAO Fish Tech Pap 475:25–29

    Google Scholar 

  2. Fukuda Y, Tarakita Z, Arai K (1984) Effect of freshness of chub mackerel on the freeze-denaturation of myofibrillar protein. Nippon Suisan Gakkaishi 50:845–852

    Article  CAS  Google Scholar 

  3. Tomioka H, Yamaguchi K, Hashimoto K, Matsuura F (1974) Studies on myosin of spiny lobster I. Isolation and physico-chemical properties. Nippon Suisan Gakkaishi 40:1269–1275

    Article  CAS  Google Scholar 

  4. Tomioka H, Yamaguchi K, Hashimoto A, Matsunaga A (1975) Studies on myosin of spiny lobster II. Enzymatic properties. Nippon Suisan Gakkaishi 41:51–58

    Article  CAS  Google Scholar 

  5. Regenstein JM (1977) Lobster (Homarus americanus) striated muscle myosin. Comp Biochem Physiol 56:239–244

    CAS  Google Scholar 

  6. Kendrick-Jones J, Lehman W, Szent-Györgyi AG (1970) Regulation in molluscan muscles. J Mol Biol 54:313–326

    Article  PubMed  CAS  Google Scholar 

  7. Lehman W, Szent-Györgyi AG (1975) Regulation of muscular contraction. Distribution of actin control and myosin control in the animal kingdom. J Gen Physiol 66:1–30

    Article  PubMed  CAS  Google Scholar 

  8. Nishita K, Ojima T (1990) American lobster troponin. J Biochem 108:677–683

    PubMed  CAS  Google Scholar 

  9. Regenstein JM, Szent-György AG (1975) Regulatory proteins of lobster striated muscle. Biochemistry 14:917–925

    Article  PubMed  CAS  Google Scholar 

  10. Mykles DL (1985) Heterogeneity of myofibrillar proteins in lobster fast and slow muscles: variation of troponin, paramyosin, and myosin light chains comprise four distinct protein assemblages. J Exp Biol 234:23–32

    CAS  Google Scholar 

  11. Mykles DL, Medler S, Kendors A, Cooper R (2002) Myofibrillar protein isoform expression is correlated with synaptic efficacy in slow fibers of the claw and leg opener muscles of crayfish and lobster. J Exp Biol 205:513–522

    PubMed  CAS  Google Scholar 

  12. Neil DM, Fowler WS, Tobasnick G (1993) Myofibrillar protein composition correlates with histochemistry in fibers of the abdominal flexor muscle of the Norway lobster. J Exp Biol 183:185–201

    CAS  Google Scholar 

  13. Azuma Y, Konno K (1998) Freeze denaturation of carp myofibrils compared with thermal denaturation. Fish Sci 64:287–290

    CAS  Google Scholar 

  14. Azuma Y, Konno K (1999) Freeze denaturation of carp myosin subfragment-1 as compared with thermal denaturation. Fish Sci 65:455–458

    CAS  Google Scholar 

  15. Katoh N, Uchiyama H, Tsukamoto S, Arai K (1977) A biochemical study of fish myofibrillar ATPase. Nippon Suisan Gakkaishi 43:857–867

    Article  CAS  Google Scholar 

  16. Koseki H, Kato S, Konno K (1993) Myosin extractability as a sensitive probe for the thermal denaturation of carp myofibrils. Nippon Suisan Gakkaishi 59:515–518

    Article  CAS  Google Scholar 

  17. Yamamoto T, Takahashi M, Kato S, Konno K (2002) Denaturation mode of carp myofibrils when affected by temperature and salt concentration. Fish Sci 68:627–633

    Article  CAS  Google Scholar 

  18. Funatsu Y, Arai K (1990) Acid-induced denaturation of carp myofibrillar protein. Nippon Suisan Gakkaishi 56:2061–2067

    Article  Google Scholar 

  19. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  20. Watabe S, Hartshorne DJ (1990) Paramyosin and the catch mechanism. Comp Biochem Physiol 96:639–646

    CAS  Google Scholar 

  21. Ohno T, Kinoshita Y, Konno K (2011) Stabilizing effect of Ca2+ on myosin and myofibrils of squid mantle muscle as affected by heating conditions. Fish Sci 77:425–430

    Article  CAS  Google Scholar 

  22. Konno K (1978) Two calcium regulatory systems in squid muscle. J Biochem 84:1431–1441

    PubMed  CAS  Google Scholar 

  23. Sakurai Y, Kanzawa N, Maruyama K (1996) Characterization of myosin and paramyosin from crayfish fast and slow muscle. Comp Biochem Physiol 113B:105–111

    CAS  Google Scholar 

  24. Oguni M, Kubo T, Matsumoto JJ (1975) Studies on the denaturation of fish muscle proteins-I physico-chemical and electron microscopical studies of freeze-denatured carp actomyosin. Nippon Suisan Gakkaishi 41:1113–1123

    Article  CAS  Google Scholar 

  25. Takahashi M, Yamamoto T, Kato S, Konno K (2005) Species-specific thermal denaturation pattern of fish myosin when heated as myofibrils as studied by myosin subfragment-1 and rod denaturation rates. Fish Sci 71:405–413

    Google Scholar 

  26. Yamashita Y, Arai K, Nishita K (1978) Thermo-stabilities of synthetic actomyosins in various combinations of myosin and actin from fish, scallop, and rabbit muscles. Nippon Suisan Gakkaishi 44:485–489

    Article  CAS  Google Scholar 

  27. Wakameda A, Nozawa S, Arai K (1983) Effect of neutral salts on thermal denaturation of myofibrillar Ca-ATPase of fish. Nippon Suisan Gakkaishi 49:237–243

    Article  CAS  Google Scholar 

  28. Kitazawa H, Kawai Y, Inoue N, Shinano H (1995) Influence of KCl on the decrease of Ca2+-ATPase activity and solubility of carp myofibrils during frozen storage. Fish Sci 61:1037–1038

    CAS  Google Scholar 

  29. Takahashi K, Inoue N, Shinano H (1993) Effect of storage temperature on freeze denaturation of carp myofibrils with KCl or NaCl. Nippon Suisan Gakkaishi 59:519–529

    Article  CAS  Google Scholar 

  30. Yoshikawa K, Inoue N, Kawai Y, Shinano H (1995) Changes of the solubility and ATPase activity of carp myofibrils during frozen storage at different temperature. Fish Sci 61:804–812

    CAS  Google Scholar 

  31. Yoshikawa K, Inoue N, Kawai Y, Shinano H (1995) Subunit components in the salt-soluble and in soluble fractions of carp myofibrils during frozen storage. Fish Sci 61:813–816

    CAS  Google Scholar 

  32. Hayashi K, Azuma Y, Koseki S, Konno K (2007) Different effect of ionic and non-ionic compounds on the freeze denaturation of myofibrils and myosin subfragment-1. Fish Sci 73:178–183

    Article  CAS  Google Scholar 

  33. Inoue N, Takatori K, Motoshige T, Shinano H (1992) Effect of storage temperature on the freeze denaturation of fish myosin B. Nippon Suisan Gakkaishi 58:2357–2360

    Article  CAS  Google Scholar 

  34. Wakameda A, Arai K (1986) Dissociation of carp myosin B into actin and myosin in the presence of a high concentration of NaCl. Nippon Suisan Gakkaishi 52:293–300

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kunihiko Konno.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jantakoson, T., Thavaroj, W. & Konno, K. Myosin and actin denaturation in frozen stored kuruma prawn Marsupenaeus japonicus myofibrils. Fish Sci 79, 341–347 (2013). https://doi.org/10.1007/s12562-012-0589-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12562-012-0589-y

Keywords

Navigation