Skip to main content
Log in

Application of the Parametric g-Formula to Characterizing Counterfactual Time-to-Event Disability Progression Outcomes in Multiple Sclerosis

  • Case Studies and Practice Articles
  • Published:
Statistics in Biosciences Aims and scope Submit manuscript

Abstract

Disentangling the effects of disease activity associated with focal inflammation, e.g., as characterized by relapses, and other pathophysiological processes leading to disability progression in multiple sclerosis (MS) is of central importance. This is because it will provide an enhanced understanding of the pathology of MS, and may have implications for treating patients. Recently, this endeavor has lead researchers to characterize progression independent of relapse activity (PIRA), which has been defined as a counterfactual outcome representing disability progression without relapses. To date, several methods based on data pre-processing have been proposed to characterize PIRA, e.g., censoring onset of disability progression at onset of relapses. However, these methods can be subject to severe bias if relapse-progression confounders are present and lead to highly imprecise inference if most of the data is unused. In this article, we perform simulations to demonstrate that, unlike these methods, the parametric g-computation formula can provide unbiased inference on PIRA in the presence of relapse-progression confounders. Additionally, we utilize new results on the g-computation formula to estimate treatment effects that provide complementary information, and require less extrapolation to be estimated than the treatment effect on PIRA. Finally, we apply our proposed methodology to two phase 3 studies of MS to highlight the benefits and additional insights that it generates over standard methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

For eligible studies, qualified researchers may request access to individual patient level clinical data through a data request platform. At the time of writing, this request platform is Vivli. https://vivli.org/ourmember/roche/. For up-to-date details on Roche’s Global Policy on the Sharing of Clinical Information and how to request access to related clinical study documents, see here: https://www.roche.com/innovation/process/clinical-trials/data-sharing/

References

  1. Avin C, Shpitser I, Pearl J (2005) Identifiability of path-specific effects. In: Proceedings of the 19th international joint conference on artificial intelligence, Edinburgh, Scotland, pp 357–363. https://dl.acm.org/doi/10.5555/1642293.1642350

  2. Blake HA, Leyrat C, Mansfield KE, Seaman S, Tomlinson LA, Carpenter J, Williamson EJ (2020) Propensity scores using missingness pattern information: a practical guide. Stat Med 39(11):1641–1657. https://doi.org/10.1002/sim.8503

    Article  MathSciNet  Google Scholar 

  3. Cree BA, Magnusson B, Rouyrre N, Fox RJ, Giovannoni G, Vermersch P, Bar-Or A, Gold R, Piani MD, Karlsson G, Tomic D, Wolf C, Dahlke F, Kappos L (2021) Siponimod: disentangling disability and relapses in secondary progressive multiple sclerosis. Mult Scler J 27(10):1564–1576. https://doi.org/10.1177/1352458520971819

    Article  Google Scholar 

  4. Daniel RM, De Stavola BL, Cousens SN (2011) Gformula: estimating causal effects in the presence of time-varying confounding or mediation using the G-computation formula. Stat J 11(4):479–517. https://doi.org/10.1177/1536867X1201100401

    Article  Google Scholar 

  5. Daniel RM, Cousens SN, De Stavola BL, Kenward MG, Sterne JAC (2013) Methods for dealing with time-dependent confounding. Stat Med 32(9):1584–1618. https://doi.org/10.1002/sim.5686

    Article  MathSciNet  Google Scholar 

  6. Daniel R, Zhang J, Farewell D (2020) Making apples from oranges: comparing non-collapsible effect estimators and their standard errors after adjustment for different covariate sets. Biom J 63(3):528–557. https://doi.org/10.1002/bimj.201900297

    Article  Google Scholar 

  7. Hauser SL, Bar-Or A, Comi G, Giovannoni G, Hartung HP, Hemmer B, Lublin F, Montalban X, Rammohan KW, Selmaj K, Traboulsee A, Wolinsky JS, Arnold DL, Klingelschmitt G, Masterman D, Fontoura P, Belachew S, Chin P, Mairon N, Garren H, Kappos L (2017) Ocrelizumab versus interferon beta-1a in relapsing multiple sclerosis. N Engl J Med 376(3):221–234. https://doi.org/10.1056/NEJMoa1601277

    Article  Google Scholar 

  8. Hauser SL, Kappos L, Arnold DL, Bar-Or A, Brochet B, Naismith RT, Traboulsee A, Wolinsky JS, Belachew S, Koendgen H, Levesque V, Manfrini M, Model F, Hubeaux S, Mehta L, Montalban X (2020) Five years of ocrelizumab in relapsing multiple sclerosis: OPERA studies open-label extension. Neurology 95(13):1854–1867. https://doi.org/10.1212/WNL.0000000000010376

    Article  Google Scholar 

  9. Hernán MA, Robins JM (2016) Using big data to emulate a target trial when a randomized trial is not available. Am J Epidemiol 183(8):758–64. https://doi.org/10.1093/aje/kwv254

    Article  Google Scholar 

  10. Hernán MA, Robins JM (2020) Confounding. In: Gelman A, Meng XL (eds) Causal inference: what if. Chapman & Hall/CRC, Boca Raton, pp 85–96

    Google Scholar 

  11. Hernán MA, Robins JM (2020) G-methods for time-varying treatments. In: Gelman A, Meng XL (eds) Causal inference: what if. Chapman & Hall/CRC, Boca Raton, pp 269–292

    Google Scholar 

  12. Howe CJ, Cole SR, Chmiel JS, Muñoz A (2011) Limitation of inverse probability-of-censoring weights in estimating survival in the presence of strong selection bias. Am J Epidemiol 173(5):569–577. https://doi.org/10.1093/aje/kwq385

    Article  Google Scholar 

  13. Kang JD, Schafer JL (2007) Demystifying double robustness: a comparison of alternative strategies for estimating a population mean from incomplete data. Stat Sci 22(4):523–539. https://doi.org/10.1214/07-sts227

    Article  MathSciNet  Google Scholar 

  14. Kappos L, Butzkueven H, Wiendl H, Spelman T, Pellegrini F, Chen Y, Dong Q, Koendgen H, Belachew S, Trojano M, Tysabri® Observational program (TOP) investigators (2018) Greater sensitivity to multiple sclerosis disability worsening and progression events using a roving versus a fixed reference value in a prospective cohort study. Multiple Scler J 24(7):963–973

  15. Kappos L, Wolinsky JS, Giovannoni G, Arnold DL, Wang Q, Bernasconi C, Model F, Koendgen H, Manfrini M, Belachew S, Hauser SL (2020) Contribution of relapse-independent progression vs relapse-associated worsening to overall confirmed disability accumulation in typical relapsing multiple sclerosis in a pooled analysis of 2 randomized clinical trials. JAMA Neurol 77(9):1132–1140. https://doi.org/10.1001/jamaneurol.2020.1568

    Article  Google Scholar 

  16. Klungsøyr O, Sexton J, Sandanger I et al (2009) Sensitivity analysis for unmeasured confounding in a marginal structural Cox proportional hazards model. Lifetime Data Anal 15:278–294

    Article  MathSciNet  Google Scholar 

  17. Kurtzke JF (1983) Rating neurologic impairment in multiple sclerosis. Neurology 33(11):1444–1452. https://doi.org/10.1212/WNL.33.11.1444

    Article  Google Scholar 

  18. Lassmann H (2018) Multiple sclerosis pathology. Cold Spring Harbor Perspect Med 8(3):a028936. https://doi.org/10.1101/cshperspect.a028936

    Article  Google Scholar 

  19. Lublin FD, Häring DA, Ganjgahi H, Ocampo A, Hatami F, Čuklina J, Aarden P, Dahlke F, Arnold DL, Wiendl H, Chitnis T, Nichols TE, Kieseier BC, Bermel RA (2022) How patients with multiple sclerosis acquire disability. Brain 145(9):3147–3161. https://doi.org/10.1093/brain/awac016

    Article  Google Scholar 

  20. Magnusson BP, Schmidli H, Rouyrre N, Scharfstein DO (2019) Bayesian inference for a principal stratum estimand to assess the treatment effect in a subgroup characterized by post-randomization events. Stat Med 38(23):4761–4771. https://doi.org/10.1002/sim.8333

    Article  MathSciNet  Google Scholar 

  21. Martinussen T, Vansteelandt S, Andersen PK (2020) Subtleties in the interpretation of hazard ratios. Lifetime Data Anal 26(4):833–855. https://doi.org/10.1007/s10985-020-09501-5

    Article  MathSciNet  Google Scholar 

  22. Mehrotra DV, Su SC, Li X (2020) An efficient alternative to the stratified Cox model analysis. Stat Med 31(17):1849–1856. https://doi.org/10.1002/sim.5327

    Article  MathSciNet  Google Scholar 

  23. Robins JM (1986) A new approach to causal Inference in mortality studies with sustained exposure periods-Application to control of the healthy worker survivor effect. Math Model 7(9–12):1393–1512. https://doi.org/10.1016/0270-0255(86)90088-6

    Article  MathSciNet  Google Scholar 

  24. Robins JM, Finkelstein D (2000) Correcting for noncompliance and dependent censoring in an aids clinical trial with inverse probability of censoring weighted (IPCW) log-rank tests. Biometrics 56(3):779–788. https://doi.org/10.1111/j.0006-341x.2000.00779.x

    Article  Google Scholar 

  25. Stensrud MJ, Dukes O (2022) Translating questions to estimands in randomized clinical trials with intercurrent events. Stat Med 41(16):3211–3228. https://doi.org/10.1002/sim.9398

    Article  MathSciNet  Google Scholar 

  26. Turner B, Cree BAC, Kappos L, Montalban X, Papeix C, Wolinsky JS, Buffels R, Fiore D, Garren H, Han J, Hauser SL (2019) Ocrelizumab efficacy in subgroups of patients with relapsing multiple sclerosis. J Neurol 266(5):1182–1193. https://doi.org/10.1007/s00415-019-09248-6

    Article  Google Scholar 

  27. University of California, San Francisco MS-EPIC Team, Cree BAC, Hollenbach JA, Bove R, Kirkish G, Sacco S, Caverzasi E, Bischof A, Gundel T, Zhu AH, Papinutto N, Stern WA, Bevan C, Romeo A, Goodin DS, Gelfand JM, Graves J, Green AJ, Wilson MR, Zamvil SS, Zhao C, Gomez R, Ragan NR, Rush GQ, Barba P, Santaniello A, Baranzini SE, Oksenberg JR, Henry RG, Hauser SL (2019) Silent progression in disease activity-free relapsing multiple sclerosis. Ann Neurol 85(5):653–666. https://doi.org/10.1002/ana.25463

    Article  Google Scholar 

  28. Vanderweele TJ, Vansteelandt S, Robins JM (2014) Effect decomposition in the presence of an exposure-induced mediator-outcome confounder. Epidemiology 25(2):300–306. https://doi.org/10.1097/EDE.0000000000000034

    Article  Google Scholar 

  29. Vansteelandt S, Linder M, Vandenberghe S, Steen J, Madsen J (2019) Mediation analysis of time-to-event endpoints accounting for repeatedly measured mediators subject to time-varying confounding. Stat Med 38(24):4828–4840. https://doi.org/10.1002/sim.8336

    Article  MathSciNet  Google Scholar 

  30. Walton C, King R, Rechtman L, Kaye W, Leray E, Marrie RA, Robertson N, La Rocca N, Uitdehaag B, van der Mei I, Wallin M, Helme A, Angood Napier C, Rijke N, Baneke P (2020) Rising prevalence of multiple sclerosis worldwide: insights from the Atlas of MS, 3rd edn. Multiple Scler J 26(14):1816–1821. https://doi.org/10.1177/1352458520970841

  31. Wen L, Young JG, Robins JM, Hernán MA (2021) Parametric G-formula implementations for causal survival analyses. Biometrics 77(2):740–753. https://doi.org/10.1111/biom.13321

    Article  MathSciNet  Google Scholar 

  32. Willems S, Schat A, van Noorden M, Fiocco M (2018) Correcting for dependent censoring in routine outcome monitoring data by applying the inverse probability censoring weighted estimator. Stat Methods Med Res 27(2):323–335. https://doi.org/10.1177/0962280216628900

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Gian-Andrea Thanei, Hans-Martin Schneble and Claude Berge for insightful discussions and reviewing a previous version of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sean Yiu.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 200 KB)

Appendix

Appendix

In this Appendix, we show how (3) can be derived from (2) for the two visit setting. Namely,

$$\begin{aligned} \begin{aligned}&\text {pr}(T(a,\overline{\varvec{L(a)}},\overline{\varvec{0}})> t)\\&\quad =\int _{v}\int _{l_1}\text {pr}(T>t\mid T>1,R_1=0,l_1,\varvec{v},A=a)f(l_1\mid T>1, \varvec{v},A=a)\,dl_1\\&\quad \quad \text {pr}(T>1\mid \varvec{v},A=a)f(\varvec{v})\,d\varvec{v}\\&\quad =\int _{\varvec{v}}E_{L_1}\{\text {pr}(T>t\mid T>1,R_1=0,L_1,\varvec{v},A=a)\mid T>1, \varvec{v},A=a\}\\&\quad \quad \text {pr}(T>1\mid \varvec{v},A=a)f(\varvec{v})\,d\varvec{v}\\&\quad =E_{\varvec{V}}[E_{L_1}\{\text {pr}(T>t\mid T>1,R_1=0,L_1,\varvec{V},A=a)\mid T>1, \varvec{V},A=a\}\\&\quad \quad \text {pr}(T>1\mid \varvec{V},A=a)] \end{aligned} \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yiu, S., Wang, Q., Mercier, F. et al. Application of the Parametric g-Formula to Characterizing Counterfactual Time-to-Event Disability Progression Outcomes in Multiple Sclerosis. Stat Biosci (2024). https://doi.org/10.1007/s12561-024-09426-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12561-024-09426-9

Keywords

Navigation