Skip to main content
Log in

Causal Mediation Tree Model for Feature Identification on High-Dimensional Mediators

  • Original Article
  • Published:
Statistics in Biosciences Aims and scope Submit manuscript

Abstract

High-dimensional mediation analysis plays an important role in recent biomedical research as a large number of mediators, such as microbiome, could modulate the effect of exposure to the outcome of interest. Most of the current studies focus on modelling independent mediators, but these methods do not consider the non-linear interactive effect between the mediators. Furthermore, it can be challenging to identify features with mediation effects from the high-dimensional mediator space. We proposed an innovative non-parametric approach to build causal mediation trees (CMT) to select important mediators and assess their non-linear interactive mediation effects on the outcome of the study. The data is recursively partitioned into subpopulations constructed by the mediators with the largest mediation effect. We aim to incorporate these non-linear interactions into the mediation framework using this approach and evaluate the total causal effect. Simulation studies were conducted to assess the performance of the CMT algorithm under different scenarios of interactive mediation effects. We applied the method to analyze vaginal microbiome sequencing data from the reproductive-age women’s study. We investigated the causal relationship between ethnic groups and the vaginal pH levels mediated by the vaginal microbiome. We identified three important microbial taxa with strong mediation effects and estimated the total effect of the mediation tree model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Baron RM, Kenny DA (1986) The moderator-mediator variable distinction in social psychological research: conceptual, strategic, and statistical considerations. J Personal Social Psychol 51(6):1173

    Article  Google Scholar 

  2. Pearl J (2022) Direct and indirect effects. In: Probabilistic and Causal Inference: The Works of Judea Pearl, pp 373–392

  3. Imai K, Keele L, Yamamoto T (2010) Identification, inference and sensitivity analysis for causal mediation effects. Stat Sci 25(1):51–71

    Article  MathSciNet  MATH  Google Scholar 

  4. VanderWeele TJ, Vansteelandt S (2010) Odds ratios for mediation analysis for a dichotomous outcome. Am J Epidemiol 172(12):1339–1348

    Article  Google Scholar 

  5. VanderWeele T, Vansteelandt S (2014) Mediation analysis with multiple mediators. Epidemiol Methods 2(1):95–115

    Article  MATH  Google Scholar 

  6. Imai K, Yamamoto T (2013) Identification and sensitivity analysis for multiple causal mechanisms: Revisiting evidence from framing experiments. Political Anal 21(2):141–171

    Article  Google Scholar 

  7. Boca SM, Sinha R, Cross AJ, Moore SC, Sampson JN (2014) Testing multiple biological mediators simultaneously. Bioinformatics 30(2):214–220

    Article  Google Scholar 

  8. Daniel RM, De Stavola BL, Cousens S, Vansteelandt S (2015) Causal mediation analysis with multiple mediators. Biometrics 71(1):1–14

    Article  MathSciNet  MATH  Google Scholar 

  9. Jérolon A, Baglietto L, Birmelé E, Alarcon F, Perduca V (2021) Causal mediation analysis in presence of multiple mediators uncausally related. Int J Biostat 17(2):191–221

    Article  Google Scholar 

  10. Belizário JE, Faintuch J (2018) Microbiome and gut dysbiosis. In: Metabolic Interaction in Infection. Springer, pp 459–476

  11. Wu GD, Chen J, Hoffmann C, Bittinger K, Chen Y-Y, Keilbaugh SA, Bewtra M, Knights D, Walters WA, Knight R et al (2011) Linking long-term dietary patterns with gut microbial enterotypes. Science 334(6052):105–108

    Article  Google Scholar 

  12. Lewis JD, Chen EZ, Baldassano RN, Otley AR, Griffiths AM, Lee D, Bittinger K, Bailey A, Friedman ES, Hoffmann C et al (2015) Inflammation, antibiotics, and diet as environmental stressors of the gut microbiome in pediatric crohn’s disease. Cell Host Microbe 18(4):489–500

    Article  Google Scholar 

  13. Kurilshikov A, Wijmenga C, Fu J, Zhernakova A (2017) Host genetics and gut microbiome: challenges and perspectives. Trends Immunol 38(9):633–647

    Article  Google Scholar 

  14. Kim D, Zeng MY, Núñez G (2017) The interplay between host immune cells and gut microbiota in chronic inflammatory diseases. Exp Mol Med 49(5):339–339

    Article  Google Scholar 

  15. Rothschild D, Weissbrod O, Barkan E, Kurilshikov A, Korem T, Zeevi D, Costea PI, Godneva A, Kalka IN, Bar N et al (2018) Environment dominates over host genetics in shaping human gut microbiota. Nature 555(7695):210–215

    Article  Google Scholar 

  16. Huang Y-T, Pan W-C (2016) Hypothesis test of mediation effect in causal mediation model with high-dimensional continuous mediators. Biometrics 72(2):402–413

    Article  MathSciNet  MATH  Google Scholar 

  17. Zhang H, Sparks JB, Karyala SV, Settlage R, Luo XM (2015) Host adaptive immunity alters gut microbiota. The ISME J 9(3):770–781

    Article  Google Scholar 

  18. Hakansson A, Molin G (2011) Gut microbiota and inflammation. Nutrients 3(6):637–682

    Article  Google Scholar 

  19. Levy M, Kolodziejczyk AA, Thaiss CA, Elinav E (2017) Dysbiosis and the immune system. Nat Rev Immunol 17(4):219–232

    Article  Google Scholar 

  20. Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, Sogin ML, Jones WJ, Roe BA, Affourtit JP et al (2009) A core gut microbiome in obese and lean twins. Nature 457(7228):480–484

    Article  Google Scholar 

  21. Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, Liang S, Zhang W, Guan Y, Shen D et al (2012) A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490(7418):55–60

    Article  Google Scholar 

  22. Koeth RA, Wang Z, Levison BS, Buffa JA, Org E, Sheehy BT, Britt EB, Fu X, Wu Y, Li L et al (2013) Intestinal microbiota metabolism of l-carnitine, a nutrient in red meat, promotes atherosclerosis. Nature Med 19(5):576–585

    Article  Google Scholar 

  23. Zhang H, Zheng Y, Zhang Z, Gao T, Joyce B, Yoon G, Zhang W, Schwartz J, Just A, Colicino E et al (2016) Estimating and testing high-dimensional mediation effects in epigenetic studies. Bioinformatics 32(20):3150–3154

    Article  Google Scholar 

  24. Zhao Y, Luo X (2022) Pathway lasso: pathway estimation and selection with high-dimensional mediators. Stat Interface 15(1):39–50

    Article  MathSciNet  MATH  Google Scholar 

  25. Chén OY, Crainiceanu C, Ogburn EL, Caffo BS, Wager TD, Lindquist MA (2018) High-dimensional multivariate mediation with application to neuroimaging data. Biostatistics 19(2):121–136

    Article  MathSciNet  Google Scholar 

  26. Alvarez-Iglesias A, Hinde J, Ferguson J, Newell J (2017) An alternative pruning based approach to unbiased recursive partitioning. Comput Stat Data Anal 106:90–102

    Article  MathSciNet  MATH  Google Scholar 

  27. Morgan JN, Sonquist JA (1963) Problems in the analysis of survey data, and a proposal. J Am Stat Assoc 58(302):415–434

    Article  MATH  Google Scholar 

  28. Athey S, Imbens G (2016) Recursive partitioning for heterogeneous causal effects. Proceed Nat Acad Sci 113(27):7353–7360

    Article  MathSciNet  MATH  Google Scholar 

  29. Valeri L, VanderWeele TJ (2013) Mediation analysis allowing for exposure-mediator interactions and causal interpretation: theoretical assumptions and implementation with sas and spss macros. Psychol Methods 18(2):137

    Article  Google Scholar 

  30. Li Y, Mathur M, Yoshida K (2022) R package regmedint: extension of regression-based causal mediation analysis with effect measure modification by covariates

  31. R Core Team (2021) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. R Foundation for Statistical Computing. https://www.R-project.org/

  32. Ravel J, Gajer P, Abdo Z, Schneider GM, Koenig SS, McCulle SL, Karlebach S, Gorle R, Russell J, Tacket CO et al (2011) Vaginal microbiome of reproductive-age women. Proceed Nat Acad Sci 108(supplement–1):4680–4687

    Article  Google Scholar 

  33. Faust K, Sathirapongsasuti JF, Izard J, Segata N, Gevers D, Raes J, Huttenhower C (2012) Microbial co-occurrence relationships in the human microbiome. PLoS Comput Biol 8(7):1002606

    Article  Google Scholar 

  34. Jespers V, Menten J, Smet H, Poradosú S, Abdellati S, Verhelst R, Hardy L, Buvé A, Crucitti T (2012) Quantification of bacterial species of the vaginal microbiome in different groups of women, using nucleic acid amplification tests. BMC Microbiol 12(1):1–10

    Article  Google Scholar 

  35. Shishpal P, Patel V, Singh D, Bhor VM (2021) ph stress mediated alteration in protein composition and reduction in cytotoxic potential of gardnerella vaginalis membrane vesicles. Front Microbiol 12:723909

    Article  Google Scholar 

  36. Serrano MG, Parikh HI, Brooks JP, Edwards DJ, Arodz TJ, Edupuganti L, Huang B, Girerd PH, Bokhari YA, Bradley SP et al (2019) Racioethnic diversity in the dynamics of the vaginal microbiome during pregnancy. Nat Med 25(6):1001–1011

    Article  Google Scholar 

  37. Fettweis JM, Brooks JP, Serrano MG, Sheth NU, Girerd PH, Edwards DJ, Strauss JF III, Jefferson KK, Buck GA, Consortium VM et al (2014) Differences in vaginal microbiome in african american women versus women of european ancestry. Microbiology 160(Pt 10):2272

    Article  Google Scholar 

  38. Beamer MA, Austin MN, Avolia HA, Meyn LA, Bunge KE, Hillier SL (2017) Bacterial species colonizing the vagina of healthy women are not associated with race. Anaerobe 45:40–43

    Article  Google Scholar 

  39. Rhoades NS, Hendrickson SM, Gerken DR, Martinez K, Slayden OD, Slifka MK, Messaoudi I (2021) Longitudinal profiling of the macaque vaginal microbiome reveals similarities to diverse human vaginal communities. Msystems 6(2):01322–20

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the editors and reviewers for their helpful comments and suggestions.

Funding

Wei Xu was funded by the Natural Sciences and Engineering Research Council of Canada (NSERC Grant RGPIN-2017-06672), Crohn’s and Colitis Canada (CCC Grant CCC-GEMIII), and Helmsley Charitable Trust. Yao Li was supported by NSERC Grant RGPIN-2017-06672 and CCC Grant CCC-GEMIII.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Appendices

Appendix A Estimating the Total Effect

By the definition, the Eq. (1), the NIE can be expressed as \(NIE=Y_{am_a}-Y_{a m_{a^*}}\). The estimation of \(Y_{am_a}\) are derived below:

$$\begin{aligned} \begin{aligned} E\left[ Y_{am_a}\mid X=x\right]&= E\left\{ E\left[ Y_{am_a}\mid m_a=o,X=x\right] \right\} \;\;\;\;by \;double\; expectation\\&= \sum _{o=1}^{O}{E\left[ Y_{am_a}\mid m_a=o,X=x\right] }P(m_a=o\mid X=x)\\&= \sum _{o=1}^{O}{E\left[ Y_{ao}\mid m_a=o,X=x\right] }P(m_a=o\mid X=x)\\&= \sum _{o=1}^{O}{E\left[ Y_{ao}\mid X=x\right] }P(m_a=o\mid a,x)\;\;by\;Y_{am} \perp m_{a^*}\mid X\; ; \;m_a \perp A \mid X\\&= \sum _{o=1}^{O}{E\left[ Y_{ao}\mid a,o,x\right] }P(o\mid a,x)\;\;by\;Y_{am} \perp m\mid X\\&= \sum _{o=1}^{O-1}\biggl \{\left( \theta ^*_0+\theta ^*_1a+\theta ^*_{2o}+a\theta ^*_{3o}+\theta ^*_4x\right) \\&\quad \times \left\{ \frac{exp\left( \beta ^*_{0o}+\beta ^*_{1o}a+\beta ^*_{2o}x\right) }{1+\sum _{o=1}^{O-1}{exp\left( \beta ^*_{0o}+\beta ^*_{1o}a+\beta ^*_{2o}x\right) }}\right\} \biggl \}\\&\quad +\left( \theta ^*_0+\theta ^*_1a+\theta ^*_{2O}+a\theta ^*_{3O}+\theta ^*_4x\right) \\&\quad \times \left\{ \frac{1}{1+\sum _{o=1}^{O-1}{exp\left( \beta ^*_{0o}+\beta ^*_{1o}a+\beta ^*_{2o}x\right) }}\right\} \\&= \theta ^*_0+\theta ^*_1a+\theta ^*_4x\\&\quad +\sum _{o=1}^{O-1}\biggl \{\left( \theta ^*_{2o}+a\theta ^*_{3o}\right) \left\{ \frac{exp\left( \beta ^*_{0o}+\beta ^*_{1o}a+\beta ^*_{2o}x\right) }{1+\sum _{o=1}^{O-1}{exp\left( \beta ^*_{0o}+\beta ^*_{1o}a+\beta ^*_{2o}x\right) }}\right\} \biggl \}\\&\quad +\left( \theta ^*_{2O}+a\theta ^*_{3O}\right) \left\{ \frac{1}{1+\sum _{o=1}^{O-1}{exp\left( \beta ^*_{0o}+\beta ^*_{1o}a+\beta ^*_{2o}x\right) }}\right\} \end{aligned} \end{aligned}$$
(A1)

Similarly,

$$\begin{aligned} \begin{aligned} E\left[ Y_{am_{a^*}}\mid X=x\right]&= E\left\{ E\left[ Y_{am_{a^*}}\mid m_{a^*}=o,X=x\right] \right\} \\&=\sum _{o=1}^{O}{E\left[ Y_{am_{a^*}}\mid m_{a^*}=o,X=x\right] }P(m_{a^*}=o\mid X=x)\\&= \theta ^*_0+\theta ^*_1a+\theta ^*_4x\\&\quad +\sum _{o=1}^{O-1}\biggl \{\left( \theta ^*_{2o}+a\theta ^*_{3o}\right) \left\{ \frac{exp\left( \beta ^*_{0o}+\beta ^*_{1o}a^*+\beta ^*_{2o}x\right) }{1+\sum _{o=1}^{O-1}{exp\left( \beta ^*_{0o}+\beta ^*_{1o}a^*+\beta ^*_{2o}x\right) }}\right\} \biggl \} \\&\quad +\left( \theta ^*_{2O}+a\theta ^*_{3O}\right) \left\{ \frac{1}{1+\sum _{o=1}^{O-1}{exp\left( \beta ^*_{0o}+\beta ^*_{1o}a^*+\beta ^*_{2o}x\right) }}\right\} \end{aligned} \end{aligned}$$
(A2)

.

Therefore, the average NIE can be expressed as:

$$\begin{aligned} \begin{aligned} Avg\;NIE_*&=E\left[ Y_{am_a}\mid X=x\right] - E\left[ Y_{am_{a^*}}\mid X=x\right] \\&=\theta ^*_0+\theta ^*_1a+\theta ^*_4x+\sum _{o=1}^{O-1} \biggl \{ \left( \theta ^*_{2o}+a\theta ^*_{3o}\right) \left\{ \frac{exp\left( \beta ^*_{0o}+\beta ^*_{1o}a+\beta ^*_{2o}x\right) }{1+\sum _{o=1}^{O-1}{exp\left( \beta ^*_{0o}+\beta ^*_{1o}a+\beta ^*_{2o}x\right) }}\right\} \biggl \}\\&\quad +\left( \theta ^*_{2O}+a\theta ^*_{3O}\right) \left\{ \frac{1}{1+\sum _{o=1}^{O-1}{exp\left( \beta ^*_{0o}+\beta ^*_{1o}a+\beta ^*_{2o}x\right) }}\right\} \\&\quad - \Bigg ( \theta ^*_0+\theta ^*_1a+\theta ^*_4x\\&\quad +\sum _{o=1}^{O-1}\biggl \{\left( \theta ^*_{2o}+a\theta ^*_{3o}\right) \left\{ \frac{exp\left( \beta ^*_{0o}+\beta ^*_{1o}a^*+\beta ^*_{2o}x\right) }{1+\sum _{o=1}^{O-1}{exp\left( \beta ^*_{0o}+\beta ^*_{1o}a^* \beta ^*_{2o}x\right) }}\right\} \biggl \} \\&\quad +\left( \theta ^*_{2O}+a\theta ^*_{3O}\right) \left\{ \frac{1}{1+\sum _{o=1}^{O-1}{exp\left( \beta ^*_{0o}+\beta ^*_{1o}a^*+\beta ^*_{2o}x\right) }}\right\} \Bigg )\\&= \sum _{o=1}^{O-1}\biggl \{ \left( \theta ^*_{2o}+a\theta ^*_{3o}\right) \left\{ \frac{exp\left( \beta ^*_{0o}+\beta ^*_{1o}a+\beta ^*_{2o}x\right) }{1+\sum _{o=1}^{O-1}{exp\left( \beta ^*_{0o}+\beta ^*_{1o}a+\beta ^*_{2o}x\right) }}\right\} \biggl \}\\&\quad +\left( \theta ^*_{2O}+a\theta ^*_{3O}\right) \left\{ \frac{1}{1+\sum _{o=1}^{O-1}{exp\left( \beta ^*_{0o}+\beta ^*_{1o}a+\beta ^*_{2o}x\right) }}\right\} \\&\quad - \sum _{o=1}^{O-1}\biggl \{\left( \theta ^*_{2o}+a\theta ^*_{3o}\right) \left\{ \frac{exp\left( \beta ^*_{0o}+\beta ^*_{1o}a^*+\beta ^*_{2o}x\right) }{1+\sum _{o=1}^{O-1}{exp\left( \beta ^*_{0o}+\beta ^*_{1o}a^*+\beta ^*_{2o}x\right) }}\right\} \biggl \}\\&\quad -\left( \theta ^*_{2O}+a\theta ^*_{3O}\right) \left\{ \frac{1}{1+\sum _{o=1}^{O-1}{exp\left( \beta ^*_{0o}+\beta ^*_{1o}a^*+\beta ^*_{2o}x\right) }}\right\} \\&= \sum _{o=1}^{O-1}\biggl \{\left( \theta ^*_{2o}+a\theta ^*_{3o}\right) \Biggl \{\frac{exp\left( \beta ^*_{0o}+\beta ^*_{1o}a+\beta ^*_{2o}x\right) }{1+\sum _{o=1}^{O-1}{exp\left( \beta ^*_{0o}+\beta ^*_{1o}a+\beta ^*_{2o}x\right) }}\\&\quad -\frac{exp\left( \beta ^*_{0o}+\beta ^*_{1o}a^*+\beta ^*_{2o}x\right) }{1+\sum _{o=1}^{O-1}{exp\left( \beta ^*_{0o}+\beta ^*_{1o}a^*+\beta ^*_{2o}x\right) }}\Biggl \}\biggl \}\\&\quad + \left( \theta ^*_{2O}+a\theta ^*_{3O}\right) \Biggl \{ \frac{1}{1+\sum _{o=1}^{O-1}{exp\left( \beta ^*_{0o}+\beta ^*_{1o}a+\beta ^*_{2o}x\right) }}\\&\quad - \frac{1}{1+\sum _{o=1}^{O-1}{exp\left( \beta ^*_{0o}+\beta ^*_{1o}a^*+\beta ^*_{2o}x\right) }}\Biggl \}\\&=\sum _{o=1}^{O-1}\biggl \{\left( \theta ^*_{2o}+a\theta ^*_{3o}\right) \Biggl \{\frac{exp\left( \beta ^*_{0o}+\beta ^*_{1o}a+\beta ^*_{2o}x\right) }{1+\sum _{o=1}^{O-1}{exp\left( \beta ^*_{0o}+\beta ^*_{1o}a+\beta ^*_{2o}x\right) }}\\&\quad -\frac{exp\left( \beta ^*_{0o}+\beta ^*_{1o}a^*+\beta ^*_{2o}x\right) }{1+\sum _{o=1}^{O-1}{exp\left( \beta ^*_{0o}+\beta ^*_{1o}a^*+\beta ^*_{2o}x\right) }}\Biggl \}\biggl \} \;\; where\;\theta ^*_{2O}=\theta ^*_{3O}=0 \end{aligned} \end{aligned}$$
(A3)

The average NDE is

$$\begin{aligned} \begin{aligned} Avg\;NDE_*&=E\left[ Y_{am_{a^*}}\mid X=x\right] - E\left[ Y_{a^*m_{a^*}}\mid X=x\right] \\&= \theta ^*_0+\theta ^*_1a+\theta ^*_4x\\&\quad +\sum _{o=1}^{O-1}\biggl \{\left( \theta ^*_{2o}+a\theta ^*_{3o}\right) \left\{ \frac{exp\left( \beta ^*_{0o}+\beta ^*_{1o}a^*+\beta ^*_{2o}x\right) }{1+\sum _{o=1}^{O-1}{exp\left( \beta ^*_{0o}+\beta ^*_{1o}a^*+\beta ^*_{2o}x\right) }}\right\} \biggl \}\\&\quad +\left( \theta ^*_{2O}+a\theta ^*_{3O}\right) \left\{ \frac{1}{1+\sum _{o=1}^{O-1}{exp\left( \beta ^*_{0o}+\beta ^*_{1o}a^*+\beta ^*_{2o}x\right) }}\right\} \\&\quad - \Bigg ( \theta ^*_0+\theta ^*_1a^*+\theta ^*_4x\\&\quad +\sum _{o=1}^{O-1}\biggl \{\left( \theta ^*_{2o}+a^*\theta ^*_{3o}\right) \left\{ \frac{exp\left( \beta ^*_{0o}+\beta ^*_{1o}a^*+\beta ^*_{2o}x\right) }{1+\sum _{o=1}^{O-1}{exp\left( \beta ^*_{0o}+\beta ^*_{1o}a^*+\beta ^*_{2o}x\right) }}\right\} \biggl \}\\&\quad +\left( \theta ^*_{2O}+a^*\theta ^*_{3O}\right) \left\{ \frac{1}{1+\sum _{o=1}^{O-1}{exp\left( \beta ^*_{0o}+\beta ^*_{1o}a^*+\beta ^*_{2o}x\right) }}\right\} \Bigg )\\&= \theta ^*_1(a-a^*)+\sum _{o=1}^{O-1}\Biggl \{\left( a-a^*\right) \theta ^*_{3o} \left\{ \frac{exp\left( \beta ^*_{0o}+\beta ^*_{1o}a^*+\beta ^*_{2o}x\right) }{1+\sum _{o=1}^{O-1}{exp\left( \beta ^*_{0o}+\beta ^*_{1o}a^*+\beta ^*_{2o}x\right) }}\right\} \Biggl \} \end{aligned} \end{aligned}$$
(A4)

.

Appendix B Additional Simulations

See Tables 6, 7 and 8.

Table 6 Performance of CMT at the different proportions of exposure by the percentage of building the correct tree structure across four scenarios with an effect size of 3 and sample size of 500
Table 7 Impact of correlated mediators on CMT performance in four scenarios with varying correlation values (\(\rho\)) for \(M_1\) and \(M_2\) (\(\rho =0,0.3 \; and \;0.5\)), consistent effect size of 3, and sample size of 500. Data generation: (1) Generate \(Z_1\) and \(Z_2\) from a bivariate standard normal distribution with a correlation \(\rho\); (2) Compute probabilities \(p_1\) and \(p_2\) using equation (16); (3) Generate quantiles \(g_1\) and \(g_2\) from standard normal distributions using \(p_1\) and \(p_2\) as probabilities; (4) Assign 1 if \(Z_1 < g_1\) for \(M_1\) and 0 otherwise; Assign 1 if \(Z_2 < g_2\) for \(M_2\) and 0 otherwise
Table 8 Impact of cut-off values on CMT performance in four scenarios with varying cut-off values (\(c=80\%,90\% \; and \;95\%\)), consistent effect size of 3, and sample size of 500

Appendix C OTU Distribution for the Microbiome Data

See Table 9.

Table 9 Microbiome information for non-zero proportion by ethnicity

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Xu, W. Causal Mediation Tree Model for Feature Identification on High-Dimensional Mediators. Stat Biosci (2023). https://doi.org/10.1007/s12561-023-09402-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12561-023-09402-9

Keywords

Navigation