Skip to main content
Log in

Variable Selection in Multivariate Functional Linear Regression

  • Published:
Statistics in Biosciences Aims and scope Submit manuscript

Abstract

Multivariate functional linear regression is commonly adopted to model the effects of several function-valued covariates on a scalar response. To select functional covariates with a time-varying effect, we develop a framework based on the reproducing kernel Hilbert space (RKHS). In particular, each coefficient function is assumed to reside in this RKHS and an RKHS norm is chosen as the penalty function in the regularized empirical risk function. This special penalty term enables us to achieve sparsity and smoothness when fitting multivariate functional linear models. Moreover, simulation studies demonstrate that the proposed estimator compares favorably with some traditional methods in variable selection, function estimation and prediction in finite samples. Finally, we apply the proposed framework to two real examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ando T, Konishi S, Imoto S (2008) Nonlinear regression modeling via regularized radial basis function networks. J Stat Plan Inference 138(11):3616–3633

    Article  MathSciNet  MATH  Google Scholar 

  2. Bro R (1999) Exploratory study of sugar production using fluorescence spectroscopy and multi-way analysis. Chemom Intell Lab Syst 46(2):133–147

    Article  Google Scholar 

  3. Cardot H, Ferraty F, Sarda P (2003) Spline estimators for the functional linear model. Stat Sin 13(3):571–591

    MathSciNet  MATH  Google Scholar 

  4. Craven P, Wahba G (1976) Smoothing noisy data with spline functions: estimating the correct degree of smoothing by the method of generalized cross-validation. Numer Math 31:377–403

    Article  MathSciNet  MATH  Google Scholar 

  5. Dineen R, Vilisaar J, Hlinka J, Bradshaw C, Morgan P, Constantinescu C, Auer D (2009) Disconnection as a mechanism for cognitive dysfunction in multiple sclerosis. Brain 132(1):239–249

    Article  Google Scholar 

  6. Fan J, Li R (2001) Variable selection via nonconcave penalized likelihood and its oracle properties. J Am Stat Assoc 96(456):1348–1360

    Article  MathSciNet  MATH  Google Scholar 

  7. Ferraty F, Vieu P (2006) Nonparametric functional data analysis: theory and practice. Springer, New York

    MATH  Google Scholar 

  8. Friedman J, Hastie T, Tibshirani R (2010) Regularization paths for generalized linear models via coordinate descent. J Stat Softw 33(1):1–22

    Article  Google Scholar 

  9. Gertheiss J, Maity A, Staicu AM (2013) Variable selection in generalized functional linear models. Statistics 2(1):86–101

    Article  MathSciNet  Google Scholar 

  10. Gu C (2013) Smoothing spline ANOVA models, 2nd edn. Springer, New York

    Book  MATH  Google Scholar 

  11. Hall P, Horowitz JL (2007) Methodology and convergence rates for functional linear regression. Ann Stat 35(1):70–91

    Article  MathSciNet  MATH  Google Scholar 

  12. Happ C, Greven S (2018) Multivariate functional principal component analysis for data observed on different (dimensional) domains. J Am Stat Assoc 113(522):649–659

    Article  MathSciNet  MATH  Google Scholar 

  13. Hastie T, Tibshirani R, Friedman J (2009) The elements of statistical learning: data mining, inference and prediction, 2nd edn. Springer, New York

    Book  MATH  Google Scholar 

  14. Hecke WV, Nagels G, Leemans A, Vandervliet E, Sijbers J, Parizel PM (2010) Correlation of cognitive dysfunction and diffusion tensor MRI measures in patients with mild and moderate multiple sclerosis. J Magn Reson Imaging 31(6):1492–1498

    Article  Google Scholar 

  15. Kim YJ, Gu C (2004) Smoothing spline gaussian regression: more scalable computation via efficient approximation. J R Stat Soc Ser B (Statistical Methodology) 66(2):337–356

    Article  MathSciNet  MATH  Google Scholar 

  16. Kokoszka P, Reimherr M (2017) Introduction to functional data analysis. CRC, London

    Book  MATH  Google Scholar 

  17. Kong D, Xue K, Yao F, Zhang HH (2016) Partially functional linear regression in high dimensions. Biometrika 103(1):147–159

    Article  MathSciNet  MATH  Google Scholar 

  18. Lin Y, Zhang HH (2006) Component selection and smoothing in multivariate nonparametric regression. Ann Stat 34(5):2272–2297

    Article  MathSciNet  MATH  Google Scholar 

  19. Matsui H, Konishi S (2011) Variable selection for functional regression models via the L1 regularization. Comput Stat Data Anal 55(12):3304–3310

    Article  MATH  Google Scholar 

  20. Munck L, Nørgaard L, Engelsen SB, Bro R, Andersson C (1998) Chemometrics in food science-a demonstration of the feasibility of a highly exploratory, inductive evaluation strategy of fundamental scientific significance. Chemom Intell Lab Syst 44(1–2):31–60

    Article  Google Scholar 

  21. Oreja-Guevara C, Ayuso T, Brieva L, Hernández MÁ, Meca-Lallana V, Ramió-Torrentà L (2019) Cognitive disfunctions and assessments in multiple sclerosis. Front Neurol 10:581

    Article  Google Scholar 

  22. Ramsay JO, Silverman BW (2005) Functional data analysis, 2nd edn. Springer, New York

    Book  MATH  Google Scholar 

  23. Reiss PT, Goldsmith J, Shang HL, Ogden RT (2017) Methods for scalar-on-function regression. Int Stat Rev 85(2):228–249

    Article  MathSciNet  Google Scholar 

  24. Sun X, Du P, Wang X, Ma P (2018) Optimal penalized function-on-function regression under a reproducing kernel Hilbert space framework. J Am Stat Assoc 113(524):1601–1611

    Article  MathSciNet  MATH  Google Scholar 

  25. Wahba G (1990) Spline models for observational data. Society for Industrial and Applied Mathematics, Philadelphia

    Book  MATH  Google Scholar 

  26. Yuan M, Cai TT (2010) A reproducing kernel Hilbert space approach to functional linear regression. Ann Stat 38(6):3412–3444

    Article  MathSciNet  MATH  Google Scholar 

  27. Yuan M, Lin Y (2006) Model selection and estimation in regression with grouped variables. J R Stat Soc Ser B (Statistical Methodology) 68(1):49–67

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peijun Sang.

Appendix

Appendix

1.1 Appendix A.1. Proof of Proposition 1

Proof

Let \(\xi _{ij}(t) = (K_1X_{ij})(t)\) for \(t \in [0, 1]\) and \(\mathop {}\!\mathcal {L}(\varvec{\xi }_j)\) denote the linear space expanded by \(\xi _{ij}, i = 1, \ldots , n\). Based on [26], we know that \(\xi _{ij} \in \mathop {}\!\mathcal {H}_1\), and hence \(\mathop {}\!\mathcal {L}(\varvec{\xi }_j)\) is a subspace of \(\mathop {}\!\mathcal {H}_1\). Each \(\beta _j\) can be written as

$$\begin{aligned} \beta _j = d_j + \sum _{i = 1}^n c_{ij}\xi _{ij} + \rho _j \end{aligned}$$

for some \(\rho _j \in \mathop {}\!\mathcal {H}_1 \ominus \mathop {}\!\mathcal {L}(\varvec{\xi }_j)\), where \(\mathop {}\!\mathcal {H}_1 \ominus \mathop {}\!\mathcal {L}(\varvec{\xi }_j)\) denotes the orthogonal complement of \(\mathop {}\!\mathcal {L}(\varvec{\xi }_j)\) in \(\mathop {}\!\mathcal {H}_1\).

Next, we plug the expression of \(\beta _j\) into (4). Let \(u_i = Y_i - \sum _{j = 1}^p \int _{\mathop {}\!\mathcal {I}_j} d_jX_{ij}(t) \textrm{d}t\) for \(i = 1, \ldots , n\). Then \(\hat{\bar{\beta }}_j\)’s minimize

$$\begin{aligned} Q(\bar{\beta }_1,\ldots , \bar{\beta }_j)&= \frac{1}{n}\sum _{i = 1}^n \left\{ u_i - \sum _{j = 1}^p \int _{\mathop {}\!\mathcal {I}_j} X_{ij}(t)\bar{\beta }_j(t) \textrm{d}t \right\} ^2 + \tau \sum _{j = 1}^p\Vert \bar{\beta }_j\Vert _{\mathop {}\!\mathcal {H}} \\&= \frac{1}{n}\sum _{i = 1}^n \left\{ u_i - \sum _{j = 1}^p \int _{\mathop {}\!\mathcal {I}_j} X_{ij}(t) \langle K_1(\cdot , t), \bar{\beta }_j \rangle _{\mathop {}\!\mathcal {H}_1} \textrm{d}t \right\} ^2 + \tau \sum _{j = 1}^p\Vert \bar{\beta }_j\Vert _{\mathop {}\!\mathcal {H}} \\&= \frac{1}{n}\sum _{i = 1}^n \left\{ u_i - \sum _{j = 1}^p \int _{\mathop {}\!\mathcal {I}_j} X_{ij}(t) \left\langle K_1(\cdot , t), \sum _{i = 1}^n c_{ij}\xi _{ij} + \rho _j \right\rangle _{\mathop {}\!\mathcal {H}_1} \textrm{d}t \right\} ^2 \\&\quad + \tau \sum _{j = 1}^p\Vert \bar{\beta }_j\Vert _{\mathop {}\!\mathcal {H}} \\&= \frac{1}{n}\sum _{i = 1}^n \left( u_i - \sum _{j = 1}^p \sum _{l = 1}^n c_{lj} \langle \xi _{ij}, \xi _{lj} \rangle _{\mathop {}\!\mathcal {H}_1} - \sum _{j = 1}^p \langle \xi _{ij}, \rho _j \rangle _{\mathop {}\!\mathcal {H}_1}\right) ^2 \\&\quad + \tau \sum _{j = 1}^p\Vert \bar{\beta }_j\Vert _{\mathop {}\!\mathcal {H}} \\&= \frac{1}{n}\sum _{i = 1}^n \left( u_i - \sum _{j = 1}^p \sum _{l = 1}^n c_{lj} \langle \xi _{ij}, \xi _{lj} \rangle _{\mathop {}\!\mathcal {H}_1}\right) ^2 + \tau \sum _{j = 1}^p\Vert \bar{\beta }_j\Vert _{\mathop {}\!\mathcal {H}} \end{aligned}$$

As we know that \(\Vert \bar{\beta }_j\Vert _{\mathop {}\!\mathcal {H}_1}^2 = \Vert \sum _{i = 1}^n c_{ij}\xi _{ij}\Vert _{\mathop {}\!\mathcal {H}_1}^2 + \Vert \rho _j\Vert _{\mathop {}\!\mathcal {H}_1}^2\), the penalty term is minimized when \(\rho _j = 0\). The proof is completed. □

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yeh, CK., Sang, P. Variable Selection in Multivariate Functional Linear Regression. Stat Biosci (2023). https://doi.org/10.1007/s12561-023-09373-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12561-023-09373-x

Keywords

Navigation