Advertisement

Cognitive Computation

, Volume 10, Issue 1, pp 117–135 | Cite as

The Impact of Sentiment Features on the Sentiment Polarity Classification in Persian Reviews

  • Ehsan Asgarian
  • Mohsen Kahani
  • Shahla Sharifi
Article

Abstract

Natural language processing (NLP) techniques can prove relevant to a variety of specialties in the field of cognitive science, including sentiment analysis. This paper investigates the impact of NLP tools, various sentiment features, and sentiment lexicon generation approaches to sentiment polarity classification of internet reviews written in Persian language. For this purpose, a comprehensive Persian WordNet (FerdowsNet), with high recall and proper precision (based on Princeton WordNet), was developed. Using FerdowsNet and a generated corpus of reviews, a Persian sentiment lexicon was developed using (i) mapping to the SentiWordNet and (ii) a semi-supervised learning method, after which the results of both methods were compared. In addition to sentiment words, a set of various features were extracted and applied to the sentiment classification. Then, by employing various well-known feature selection approaches and state-of-the art machine learning methods, a sentiment classification for Persian text reviews was carried out. The obtained results demonstrate the critical role of sentiment lexicon quality in improving the quality of sentiment classification in Persian language.

Keywords

Opinion mining Persian sentiment word miner Feature engineering Comprehensive Persian WordNet 

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Informed Consent

In this paper, informed consent was not needed. We do not use any private or personal information in this research study.

References

  1. 1.
    Poria S, Cambria E, Bajpai R, Hussain A. A review of affective computing: from unimodal analysis to multimodal fusion. Inf Fusion. 2017;37:98–125.CrossRefGoogle Scholar
  2. 2.
    Turney, P.D. Thumbs up or thumbs down?: semantic orientation applied to unsupervised classification of reviews. in Proceedings of the 40th annual meeting on association for computational linguistics. 2002. Assoc Comput LinguistGoogle Scholar
  3. 3.
    Recupero DR, Presutti V, Consoli S, Gangemi A, Nuzzolese AG. Sentilo: frame-based sentiment analysis. Cogn Comput. 2015;7(2):211–25.CrossRefGoogle Scholar
  4. 4.
    Pang, B. and L. Lee, Seeing stars: Exploiting class relationships for sentiment categorization with respect to rating scales, in Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics. 2005, Association for Computational Linguistics. p. 115–124.Google Scholar
  5. 5.
    Tang D, Qin B, Wei F, Dong L, Liu T, Zhou M. A joint segmentation and classification framework for sentence level sentiment classification. IEEE/ACM Trans Audio Speech Lang Process. 2015;23(11):1750–61.CrossRefGoogle Scholar
  6. 6.
    Agarwal B, Mittal N. Prominent feature extraction for sentiment analysis. Berlin: Springer International Publishing; 2016.CrossRefGoogle Scholar
  7. 7.
    Liu B. Sentiment analysis. Mining opinions, sentiments, and emotions: Cambridge University Press; 2015.CrossRefGoogle Scholar
  8. 8.
    Cambria E, Rajagopal D, Olsher D, Das D. Big social data analysis. Big Data Comput. 2013;2013:401–14.CrossRefGoogle Scholar
  9. 9.
    Wang Q-F, Cambria E, Liu C-L, Hussain A. Common sense knowledge for handwritten chinese text recognition. Cogn Comput. 2013;5(2):234–42.CrossRefGoogle Scholar
  10. 10.
    Cambria E, Mazzocco T, Hussain A. Application of multi-dimensional scaling and artificial neural networks for biologically inspired opinion mining. Biologically Inspired Cogn Architectures. 2013;4:41–53.CrossRefGoogle Scholar
  11. 11.
    Zheng L, Wang H, Gao S. Sentimental feature selection for sentiment analysis of Chinese online reviews. Int J Mach Learn Cybern. 2015:1–10.Google Scholar
  12. 12.
    Liao C, Feng C, Yang S, Huang H. Topic-related Chinese message sentiment analysis. Neurocomputing. 2016;210:237–46.CrossRefGoogle Scholar
  13. 13.
    Aldayel HK, Azmi AM. Arabic tweets sentiment analysis—a hybrid scheme. J Inf Sci. 2015;42(6):782–97.CrossRefGoogle Scholar
  14. 14.
    Vilares D, Alonso MA, Gómez-Rodríguez C. A syntactic approach for opinion mining on Spanish reviews. Nat Lang Eng. 2015;21(01):139–63.CrossRefGoogle Scholar
  15. 15.
    Habernal I, Ptáček T, Steinberger J. Reprint of “Supervised sentiment analysis in Czech social media”. Inf Process Manag. 2015;51(4):532–46.CrossRefGoogle Scholar
  16. 16.
    Dashtipour K, Poria S, Hussain A, Cambria E, Hawalah AY, Gelbukh A, et al. Multilingual sentiment analysis: state of the art and independent comparison of techniques. Cogn Comput. 2016:1–15.Google Scholar
  17. 17.
    Balahur A, Perea-Ortega JM. Sentiment analysis system adaptation for multilingual processing: The case of tweets. Inf Process Manag. 2015;51(4):547–56.CrossRefGoogle Scholar
  18. 18.
    Zhang, P., S. Wang, and D. Li, Cross-lingual sentiment classification: similarity discovery plus training data adjustment. Knowl-Based Syst, 2016.Google Scholar
  19. 19.
    Guo, H., H. Zhu, Z. Guo, X. Zhang, and Z. Su. OpinionIt: a text mining system for cross-lingual opinion analysis. in Proceedings of the 19th ACM international conference on Information and knowledge management. 2010. ACM.Google Scholar
  20. 20.
    Gao D, Wei F, Li W, Liu X, Zhou M. Cross-lingual sentiment lexicon learning with bilingual word graph label propagation. Comput Linguist. 2015;41(1):21–40.CrossRefGoogle Scholar
  21. 21.
    Balahur A, Turchi M. Comparative experiments using supervised learning and machine translation for multilingual sentiment analysis. Comput Speech Lang. 2013;28(1):56–75.CrossRefGoogle Scholar
  22. 22.
    Banea C, Mihalcea R, Wiebe J. Porting multilingual subjectivity resources across languages. IEEE Trans Affect Comput. 2013;4(2)Google Scholar
  23. 23.
    Martín-Valdivia M-T, Martínez-Cámara E, Perea-Ortega J-M, Ureña-López LA. Sentiment polarity detection in Spanish reviews combining supervised and unsupervised approaches. Expert Syst Appl. 2013;40(10):3934–42.CrossRefGoogle Scholar
  24. 24.
    Duwairi R, El-Orfali M. A study of the effects of preprocessing strategies on sentiment analysis for Arabic text. J Inf Sci. 2014;40(4):501–13.CrossRefGoogle Scholar
  25. 25.
    Prusa, J.D., T.M. Khoshgoftaar, and D.J. Dittman. Impact of feature selection techniques for tweet sentiment classification. in Proceedings of the Twenty-Eighth International Florida Artificial Intelligence Research Society Conference. 2015.Google Scholar
  26. 26.
    Uysal AK, Gunal S. The impact of preprocessing on text classification. Inf Process Manag. 2014;50(1):104–12.CrossRefGoogle Scholar
  27. 27.
    Shamsfard, M. Challenges and open problems in Persian text processing. In 5th Language & Technology Conference (LTC): Human Language Technologies as a Challenge for Computer Science and Linguistics. Poznań, Poland; 2011. p. 65–69.Google Scholar
  28. 28.
    Feely, W., M. Manshadi, R. Frederking, and L. Levin. The CMU METAL Farsi NLP Approach. in Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC’14). 2014.Google Scholar
  29. 29.
    Hung C, Chen S-J. Word sense disambiguation based sentiment lexicons for sentiment classification. Knowl-Based Syst. 2016;110:224–32.CrossRefGoogle Scholar
  30. 30.
    Taboada M, Brooke J, Tofiloski M, Voll K, Stede M. Lexicon-based methods for sentiment analysis. Comput Linguist. 2011;37(2):267–307.CrossRefGoogle Scholar
  31. 31.
    Montejo-Ráez A, Martínez-Cámara E, Martín-Valdivia MT, Ureña-López LA. Ranked wordnet graph for sentiment polarity classification in twitter. Comput Speech Lang. 2014;28(1):93–107.CrossRefGoogle Scholar
  32. 32.
    Agarwal B, Poria S, Mittal N, Gelbukh A, Hussain A. Concept-level sentiment analysis with dependency-based semantic parsing: a novel approach. Cogn Comput. 2015;7(4):487–99.CrossRefGoogle Scholar
  33. 33.
    Poria S, Cambria E, Winterstein G, Huang G-B. Sentic patterns: Dependency-based rules for concept-level sentiment analysis. Knowl-Based Syst. 2014;69:45–63.CrossRefGoogle Scholar
  34. 34.
    Dong, L., F. Wei, S. Liu, M. Zhou, and K. Xu, A statistical parsing framework for sentiment classification. Comput Linguist, 2015.Google Scholar
  35. 35.
    Oliveira N, Cortez P, Areal N. Stock market sentiment lexicon acquisition using microblogging data and statistical measures. Decis Support Syst. 2016;85:62–73.CrossRefGoogle Scholar
  36. 36.
    Ofek N, Poria S, Rokach L, Cambria E, Hussain A, Shabtai A. Unsupervised commonsense knowledge enrichment for domain-specific sentiment analysis. Cogn Comput. 2016;8(3):467–77.CrossRefGoogle Scholar
  37. 37.
    Wang G, Zhang Z, Sun J, Yang S, Larson CA. POS-RS: a random Subspace method for sentiment classification based on part-of-speech analysis. Inf Process Manag. 2015;51(4):458–79.CrossRefGoogle Scholar
  38. 38.
    Liu, B. and L. Zhang, A survey of opinion mining and sentiment analysis, in Mining Text Data. 2012, Springer. p. 415–463.Google Scholar
  39. 39.
    Boiy E, Moens M-F. A machine learning approach to sentiment analysis in multilingual Web texts. Inf Retr. 2009;12(5):526–58.CrossRefGoogle Scholar
  40. 40.
    Cambria E. Affective computing and sentiment analysis. IEEE Intell Syst. 2016;31(2):102–7.CrossRefGoogle Scholar
  41. 41.
    Appel O, Chiclana F, Carter J, Fujita H. A hybrid approach to the sentiment analysis problem at the sentence level. Knowl-Based Syst. 2016;108:110–24.CrossRefGoogle Scholar
  42. 42.
    Catal C, Nangir M. A sentiment classification model based on multiple classifiers. Appl Soft Comput. 2017;50:135–41.CrossRefGoogle Scholar
  43. 43.
    Rushdi Saleh M, Martín-Valdivia MT, Montejo-Ráez A, Ureña-López L. Experiments with SVM to classify opinions in different domains. Expert Syst Appl. 2011;38(12):14799–804.CrossRefGoogle Scholar
  44. 44.
    Esuli, A. and F. Sebastiani, Pageranking wordnet synsets: an application to opinion mining, in Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics (ACL). 2007: Prague, Czech Republic. p. 442–431.Google Scholar
  45. 45.
    Hassan, A. and D. Radev. Identifying text polarity using random walks. in Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics. 2010. Assoc Comput LinguistGoogle Scholar
  46. 46.
    Hassan, A., A. Abu-Jbara, R. Jha, and D. Radev. Identifying the semantic orientation of foreign words. in Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies: short papers-Volume 2. 2011. Assoc Comput LinguistGoogle Scholar
  47. 47.
    Dehdarbehbahani I, Shakery A, Faili H. Semi-supervised word polarity identification in resource-lean languages. Neural Netw. 2014;58:50–9.CrossRefPubMedGoogle Scholar
  48. 48.
    Dehkharghani R, Saygin Y, Yanikoglu B, Oflazer K. SentiTurkNet: a Turkish polarity lexicon for sentiment analysis. Lang Resour Eval. 2016;50(3):667–85.CrossRefGoogle Scholar
  49. 49.
    Baccianella, S., A. Esuli, and F. Sebastiani. SentiWordNet 3.0: an enhanced lexical resource for sentiment analysis and opinion mining. in LREC. 2010.Google Scholar
  50. 50.
    Esuli, A. and F. Sebastiani. Sentiwordnet: A publicly available lexical resource for opinion mining. in Proceedings of 5th International Conference on Language Resources and Evaluation (LREC). 2006. Genoa: Citeseer.Google Scholar
  51. 51.
    Strapparava, C. and A. Valitutti. WordNet Affect: an Affective Extension of WordNet. in Proceedings of the 4th International Conference on Language Resources and Evaluation (LREC). 2004.Google Scholar
  52. 52.
    Neviarouskaya A, Prendinger H, Ishizuka M. SentiFul: a lexicon for sentiment analysis. IEEE Trans Affect Comput. 2011;2(1):22–36.CrossRefGoogle Scholar
  53. 53.
    Cambria, E., R. Speer, C. Havasi, and A. Hussain. SenticNet: A publicly available semantic resource for opinion mining. in AAAI fall symposium: commonsense knowledge. 2010.Google Scholar
  54. 54.
    Cambria, E., S. Poria, R. Bajpai, and B.W. Schuller. SenticNet 4: A Semantic Resource for Sentiment Analysis Based on Conceptual Primitives. in Proceedings of the 26th International Conference Computational Linguistics (COLING). 2016. Osaka.Google Scholar
  55. 55.
    Pandarachalil R, Sendhilkumar S, Mahalakshmi G. Twitter sentiment analysis for large-scale data: an unsupervised approach. Cogn Comput. 2015;7(2):254–62.CrossRefGoogle Scholar
  56. 56.
    Denecke, K. Using sentiwordnet for multilingual sentiment analysis. in Data Engineering Workshop, 2008. ICDEW 2008. IEEE 24th International Conference on. 2008. IEEE.Google Scholar
  57. 57.
    Cruz FL, Troyano JA, Pontes B, Ortega FJ. Building layered, multilingual sentiment lexicons at synset and lemma levels. Expert Syst Appl. 2014;41(13):5984–94.CrossRefGoogle Scholar
  58. 58.
    Basiri ME, Naghsh-Nilchi AR, Ghassem-Aghaee N. A framework for sentiment analysis in Persian. Open Trans Inf Process. 2014;1(3):1–14.Google Scholar
  59. 59.
    Amiri, F., S. Scerri, and M.H. Khodashahi. Lexicon-based sentiment analysis for Persian Text. in Recent Advances in Natural Language Processing. 2015.Google Scholar
  60. 60.
    Shams, M., A. Shakery, and H. Faili. A non-parametric LDA-based induction method for sentiment analysis. in Proceeding of the16th CSI International Symposium on Artificial Intelligence and Signal Processing (AISP). 2012. IEEE.Google Scholar
  61. 61.
    Ali-Mardani S, Aghaie A. Desinging supervised method for opinion mining in the Persian using lexicon and SVM (In Persian). J Inf Technol Manag. 2015;7(2):345–62.Google Scholar
  62. 62.
    Cerini, S., V. Compagnoni, A. Demontis, M. Formentelli, and G. Gandini, Micro-WNOp: a gold standard for the evaluation of automatically compiled lexical resources for opinion mining. Language resources and linguistic theory: Typology, second language acquisition, English linguistics, 2007: p. 200–210.Google Scholar
  63. 63.
    Dashtipour, K., A. Hussain, Q. Zhou, A. Gelbukh, A.Y. Hawalah, and E. Cambria. PerSent: a freely available Persian sentiment lexicon. in Proceedings of the 8th International Conference Advances in Brain Inspired Cognitive Systems, BICS 2016, Beijing, China. 2016. Spring.Google Scholar
  64. 64.
    Steinberger J, Ebrahim M, Ehrmann M, Hurriyetoglu A, Kabadjov M, Lenkova P, et al. Creating sentiment dictionaries via triangulation. Decis Support Syst. 2012;53(4):689–94.CrossRefGoogle Scholar
  65. 65.
    Özsert, C.M. and A. Özgür, Word polarity detection using a multilingual approach, in computational linguistics and intelligent text processing. 2013, Springer. p. 75–82.Google Scholar
  66. 66.
    Chen, Y. and S. Skiena. Building sentiment lexicons for all major languages. in Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Short Papers). 2014.Google Scholar
  67. 67.
    Mahyoub FH, Siddiqui MA, Dahab MY. Building an Arabic sentiment lexicon using semi-supervised learning. J King Saud Univ Comput Inf Sci. 2014;26(4):417–24.Google Scholar
  68. 68.
    Famian A, Aghajaney D. Towards building a WordNet for Persian adjectives. Int J Lexicogr. 2000;2006:307–8.Google Scholar
  69. 69.
    Keyvan, F., H. Borjian, M. Kasheff, and C. Fellbaum. Developing persianet: the persian wordnet. in 3rd Global wordnet conference. 2007.Google Scholar
  70. 70.
    Montazery, M. and H. Faili. Automatic Persian wordnet construction. in Proceedings of the 23rd International Conference on Computational Linguistics: Posters. 2010. Assoc Comput Linguist.Google Scholar
  71. 71.
    Shamsfard, M., A. Hesabi, H. Fadaei, N. Mansoory, A. Famian, S. Bagherbeigi, E. Fekri, M. Monshizadeh, and S.M. Assi. Semi automatic development of farsnet; the persian wordnet. in Proceedings of 5th Global WordNet Conference, Mumbai, India. 2010.Google Scholar
  72. 72.
    Fadaee, M., H. Ghader, H. Faili, and A. Shakery, Automatic WordNet construction using Markov Chain Monte Carlo. Polibits, 2013(47): p. 13–22.Google Scholar
  73. 73.
    Taghizadeh N, Faili H. Automatic Wordnet development for low-resource languages using cross-lingual WSD. J Artif Intell Res. 2016;56:61–87.Google Scholar
  74. 74.
    Mahdisoltani, F., J. Biega, and F. Suchanek. YAGO3: a knowledge base from multilingual Wikipedias. in 7th Biennial Conference on Innovative Data Systems Research. 2014. CIDR 2015.Google Scholar
  75. 75.
    Turney, P. Mining the web for synonyms: PMI-IR versus LSA on TOEFL. in 12th European Conference on Machine Learning (ECML 2001), Freiburg, Germany 2001.Google Scholar
  76. 76.
    AleAhmad A, Amiri H, Darrudi E, Rahgozar M, Oroumchian F. Hamshahri: a standard Persian text collection. Knowl-Based Syst. 2009;22(5):382–7.CrossRefGoogle Scholar
  77. 77.
    Eghbalzadeh, H., B. Hosseini, S. Khadivi, and A. Khodabakhsh. Persica: a Persian corpus for multi-purpose text mining and Natural language processing. in Telecommunications (IST), 2012 Sixth International Symposium on. 2012. IEEE.Google Scholar
  78. 78.
    Balali, A., A. Rajabi, S. Ghassemi, M. Asadpour, and H. Faili. Content diffusion prediction in social networks. in 5th Conference on Information and Knowledge Technology (IKT). 2013.Google Scholar
  79. 79.
    Jin, W., H.H. Ho, and R.K. Srihari. OpinionMiner: a novel machine learning system for web opinion mining and extraction. in Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining. 2009. ACM.Google Scholar
  80. 80.
    Collins, M. Discriminative training methods for hidden markov models: theory and experiments with perceptron algorithms. in Proceedings of the ACL-02 conference on Empirical methods in natural language processing. 2002. Assoc Comput LinguistGoogle Scholar
  81. 81.
    Chu C, Hsu A-L, Chou K-H, Bandettini P, Lin C, A. D.N. Initiative. Does feature selection improve classification accuracy? Impact of sample size and feature selection on classification using anatomical magnetic resonance images. NeuroImage. 2012;60(1):59–70.CrossRefPubMedGoogle Scholar
  82. 82.
    Tang, J., S. Alelyani, and H. Liu, Feature selection for classification: a review. Data Classification: Algorithms and Applications, 2014.Google Scholar
  83. 83.
    Bermingham ML, Pong-Wong R, Spiliopoulou A, Hayward C, Rudan I, Campbell H, et al. Application of high-dimensional feature selection: evaluation for genomic prediction in man. Sci Rep. 2015;5:10312.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Paltoglou, G. and M. Thelwall. A study of information retrieval weighting schemes for sentiment analysis. in Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics. 2010. Assoc Comput LinguistGoogle Scholar
  85. 85.
    Martineau, J. and T. Finin, Delta TFIDF: an improved feature space for sentiment analysis, in Proceedings of the Third International ICWSM Conference. 2009. p. 106.Google Scholar
  86. 86.
    Blamey, B., T. Crick, and G. Oatley, RU:-) or:-(? character-vs. word-gram feature selection for sentiment classification of OSN corpora, in Research and Development in Intelligent Systems XXIX. 2012, Springer. p. 207–212.Google Scholar
  87. 87.
    Mohammad, S.M., S. Kiritchenko, and X. Zhu, NRC-Canada: Building the state-of-the-art in sentiment analysis of tweets, in 7th International Workshop on Semantic Evaluation (SemEval 2013). 2013. p. 321–327.Google Scholar
  88. 88.
    Zhu, X., S. Kiritchenko, and S.M. Mohammad. Nrc-canada-2014: Recent improvements in the sentiment analysis of tweets. in Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014). 2014.Google Scholar
  89. 89.
    Jain AK, Pandey Y. Analysis and implementation of sentiment classification using Lexical POS markers. Int J Comput Commun Netw. 2013;2(1):36–40.Google Scholar
  90. 90.
    Agarwal B, Mittal N. Semantic feature clustering for sentiment analysis of English reviews. IETE J Res. 2014;60(6):414–22.CrossRefGoogle Scholar
  91. 91.
    O’Keefe, T. and I. Koprinska. Feature selection and weighting methods in sentiment analysis. in Proceedings of the 14th Australasian document computing symposium, Sydney. 2009. Citeseer.Google Scholar
  92. 92.
    Dong, L., F. Wei, Y. Yin, M. Zhou, and K. Xu, Splusplus: a feature-rich two-stage classifier for sentiment analysis of tweets. Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015), 2015: p. 515–519.Google Scholar
  93. 93.
    Mikolov, T., I. Sutskever, K. Chen, G.S. Corrado, and J. Dean. Distributed representations of words and phrases and their compositionality. in Adv Neural Inf Proces Syst 2013.Google Scholar
  94. 94.
    Tang, D., F. Wei, N. Yang, M. Zhou, T. Liu, and B. Qin. Learning sentiment-specific word embedding for Twitter sentiment classification. in The 52nd Annual Meeting of the Association for Computational Linguistics (ACL). 2014. USA.Google Scholar
  95. 95.
    Labutov, I. and H. Lipson. Re-embedding words. in Association for Computational Linguistics (ACL). 2013. Bulgaria.Google Scholar
  96. 96.
    Forman G. An extensive empirical study of feature selection metrics for text classification. J Mach Learn Res. 2003;3:1289–305.Google Scholar
  97. 97.
    Zheng Z, Wu X, Srihari R. Feature selection for text categorization on imbalanced data. ACM Sigkdd Explor Newsl. 2004;6(1):80–9.CrossRefGoogle Scholar
  98. 98.
    Uchyigit, G. Experimental evaluation of feature selection methods for text classification. in Fuzzy Systems and Knowledge Discovery (FSKD), 2012 9th International Conference on. 2012. IEEE.Google Scholar
  99. 99.
    Manning, C.D., P. Raghavan, and H. Schütze, Introduction to information retrieval. Vol. 1. 2008: Cambridge University Press.Google Scholar
  100. 100.
    Sebastiani F. Machine learning in automated text categorization. Acm Comput Surveys (Csur). 2002;34(1):1–47.CrossRefGoogle Scholar
  101. 101.
    Ng, H.T., W.B. Goh, and K.L. Low. Feature selection, perceptron learning, and a usability case study for text categorization. in ACM SIGIR Forum. 1997. ACM.Google Scholar
  102. 102.
    Galavotti, L., F. Sebastiani, and M. Simi, Experiments on the use of feature selection and negative evidence in automated text categorization, in Research and Advanced Technology for Digital Libraries. 2000, Springer. p. 59–68.Google Scholar
  103. 103.
    Fragoudis D, Meretakis D, Likothanassis S. Best terms: an efficient feature-selection algorithm for text categorization. Knowl Inf Syst. 2005;8(1):16–33.CrossRefGoogle Scholar
  104. 104.
    Simeon, M. and R. Hilderman. Categorical proportional difference: A feature selection method for text categorization. in Proceedings of the 7th Australasian Data Mining Conference. 2008. Australian Computer Society Inc.Google Scholar
  105. 105.
    Denecke, K., Are SentiWordNet scores suited for multi-domain sentiment classification?, in Fourth International Conference on Digital Information Management, (ICDIM 2009). 2009, IEEE. p. 1–6.Google Scholar
  106. 106.
    Fan R-E, Chang K-W, Hsieh C-J, Wang X-R, Lin C-J. LIBLINEAR: a library for large linear classification. J Mach Learn Res. 2008;9:1871–4.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Computer EngineeringFerdowsi University of MashhadMashhadIran
  2. 2.Department of Linguistics, Faculty of Letters and HumanitiesFerdowsi University of MashhadMashhadIran

Personalised recommendations