Ungerleider LG, Mishkin M. Two cortical visual systems. Ingle, DJ, Goodale, MA, and Mansfield, RJW, editors, Analysis of Visual Behavior, pages 549–86. MIT Press, Cambridge, MA; 1982.
Goodale MA, Milner AD. Separate visual pathways for perception and action. Trends Neurosci 1992;15: 20–5.
CAS
Article
PubMed
Google Scholar
DiCarlo JJ, Zoccolan D, Rust NC. How does the brain solve visual object recognition?. Neuron 2012; 73(3):415–34.
CAS
Article
PubMed
PubMed Central
Google Scholar
Krüger N, Janssen P, Kalkan S, Lappe M, Leonardis A, Piater J, Rodríguez-Sánchez AJ, Wiskott L. Deep hierarchies in the primate visual cortex: what can we learn for computer vision? IEEE Trans Pattern Anal Mach Intell 2013;35:1847–71.
Article
PubMed
Google Scholar
Clark A. Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behav Brain Sci 2013;36(03):181–204.
Article
PubMed
Google Scholar
Huang Y, Rao RPN. Predictive coding. WIREs Cognit Sci 2011;2:580–93. doi:10.1002/wcs.142.
Rao RPN, Ballard DH. Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nat Neurosci 1999;2(1):79–87.
CAS
Article
PubMed
Google Scholar
Kok P, de Lange PF. Predictive coding in sensory cortex. Forstmann, UB and Wagenmakers, E-J, editors, An Introduction to Model-Based Cognitive Neuroscience, pages 221–44. Springer, New York, NY, 2015. ISBN 978-1-4939-2236-9. doi:10.1007/978-1-4939-2236-9_11.
Friston K, Kiebel S. Predictive coding under the free-energy principle. Philos Trans R Soc Lond Ser B Biol Sci 2009;364:1211–21. doi:10.1098/rstb.2008.0300.
Article
Google Scholar
Spratling MW. A review of predictive coding algorithms. Brain Cogn (in press) 2016a. doi:10.1016/j.bandc.2015.11.003.
Spratling MW. Predictive coding. Jaeger, D and Jung, R, editors, Encyclopedia of Computational Neuroscience, pages 1–5. Springer, New York, NY; 2014a. doi:10.1007/978-1-4614-7320-6_509-6.
Spratling MW. Predictive coding as a model of biased competition in visual selective attention. Vis Res 2008a; 48(12):1391–408. doi:10.1016/j.visres.2008.03.009.
CAS
Article
PubMed
Google Scholar
Spratling MW. Reconciling predictive coding and biased competition models of cortical function. Front Comput Neurosci 2008b;2(4):1–8. doi:10.3389/neuro.10.004.2008.
Google Scholar
Spratling MW, De Meyer K, Kompass R. Unsupervised learning of overlapping image components using divisive input modulation. Comput Intell Neurosci 2009;2009(381457):1–19. doi:10.1155/2009/381457.
Article
Google Scholar
Kersten D, Mamassian P, Yuille A. Object perception as Bayesian inference. Annu Rev Psychol 2004; 55(1):271–304.
Article
PubMed
Google Scholar
Lochmann T, Deneve S. Neural processing as causal inference. Curr Opin Neurol 2011;21(5):774–81.
CAS
Article
Google Scholar
Lochmann T, Ernst UA, Denève S. Perceptual inference predicts contextual modulations of sensory responses. J Neurosci 2012;32(12):4179–95.
CAS
Article
PubMed
Google Scholar
Spratling MW. Unsupervised learning of generative and discriminative weights encoding elementary image components in a predictive coding model of cortical function. Neural Comput 2012;24(1):60–103. doi:10.1162/NECO_a_00222.
Pinto N, Cox DD, DiCarlo JJ. 2008. Why is real-world visual object recognition hard? PLoS Computational Biology 4(1).
Riesenhuber M, Poggio T. Hierarchical models of object recognition in cortex. Nat Neurosci 1999;2(11): 1019–25.
CAS
Article
PubMed
Google Scholar
DiCarlo JJ, Cox DD. Untangling invariant object recognition. Trends Cogn Sci 2007;11(8):333–41.
Article
PubMed
Google Scholar
Oram MW, Perrett DI. Modelling visual recognition from neurobiological constraints. Neural Netw 1994; 7(6–7):945–72.
Article
Google Scholar
Gilbert CD. Plasticity in visual perception and physiology. Curr Opin Neurobiol 1996;6(2):269–74.
CAS
Article
PubMed
Google Scholar
Logothetis N. Object vision and visual awareness. Curr Opin Neurobiol 1998;8(4):536–44.
CAS
Article
PubMed
Google Scholar
Mountcastle VB. 1998. Perceptual Neuroscience The Cerebral Cortex. Harvard University Press, Cambridge MA.
Wallis G, Bülthoff H. Learning to recognize objects. Trends Cogn Sci 1999;3(1):22–31.
CAS
Article
PubMed
Google Scholar
Kobatake E, Tanaka K. Neuronal selectivities to complex object features in the ventral visual pathway of the macaque cerebral cortex. J Neurophysiol 1994;71(3):856–67.
CAS
PubMed
Google Scholar
Rust NC, Dicarlo JJ. Selectivity and tolerance (‘invariance’) both increase as visual information propagates from cortical area V4 to IT. J Neurosci 2010;30:12978–95.
CAS
Article
PubMed
PubMed Central
Google Scholar
Spratling MW. Learning viewpoint invariant perceptual representations from cluttered images. IEEE Trans Pattern Anal Mach Intell 2005;27(5):753–61. doi:10.1109/TPAMI.2005.105.
Article
PubMed
Google Scholar
Fukushima K. Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol Cybern 1980;36(4):193–202.
CAS
Article
PubMed
Google Scholar
Fukushima K. Neocognitron: a hierarchical neural network capable of visual pattern recognition. Neural Netw 1988;1(2):119–30.
Article
Google Scholar
Fukushima K. Restoring partly occluded patterns: a neural network model. Neural Netw 2005;18(1):33–43.
Article
PubMed
Google Scholar
Theriault C, Thome N, Cord M. Extended coding and pooling in the HMAX model. IEEE Trans Image Process 2013;22(2):764–77.
Article
PubMed
Google Scholar
Serre T, Wolf L, Bileschi S, Riesenhuber M, Poggio T. Robust object recognition with cortex-like mechanisms. IEEE Trans Pattern Anal Mach Intell 2007;29(3):411–26.
Article
PubMed
Google Scholar
Mutch J, Lowe DG. Object class recognition and localization using sparse features with limited receptive fields. Int J Comput Vis 2008;80(1):45–57.
Article
Google Scholar
Ciresan DC, Meier U, Schmidhuber J. Multi-column deep neural networks for image classification. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition; 2012.
Krizhevsky A, Sutskever I, Hinton G. Imagenet classification with deep convolutional neural networks. Pereira, F, Burges, CJC, Bottou, L, and Weinberger, KQ, editors, Advances in Neural Information Processing Systems, volume 25, pages 1097–105. Curran Associates, Inc.; 2012.
LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Proc IEEE 1998;86(11):2278–324.
Article
Google Scholar
LeCun Y, Kavukvuoglu K, Farabet C. Convolutional networks and applications in vision. Proceedings of the International Symposium on Circuits and Systems (ISCAS10). IEEE; 2010.
Jarrett K, Kavukcuoglu K, Ranzato MA, LeCun Y. 2009. What is the best multi-stage architecture for object recognition?.
LeCun Y, Bengio Y. Convolutional networks for images, speech, and time-series. Arbib, MA, editor, The Handbook of Brain Theory and Neural Networks. MIT Press; 1995.
Spratling MW. Predictive coding as a model of cognition . Cogn Process 2016b; 17 (3): 279–305. doi:10.1007/s10339-016-0765-6.
Spratling MW. 2016c. Accurate and tolerant image patch matching using explaining away. submitted.
Spratling MW. A neural implementation of the hough transform and the advantages of explaining away. Image Vis Comput 2016d;52:15–24. doi:10.1016/j.imavis.2016.05.001.
Article
Google Scholar
Logothetis NK, Pauls J. Psychophysical and physiological evidence for viewer-centred object representations in the primate. Cereb Cortex 1995;3 :270–88.
Article
Google Scholar
Logothetis NK, Pauls J, Poggio T. Shape representation in the inferior temporal cortex of monkeys. Curr Biol 1995;5:552–63.
CAS
Article
PubMed
Google Scholar
Anselmi F, Leibo J, Rosasco L, Mutch J, Tacchetti A, Poggio T. 2014. Unsupervised learning of invariant representations with low sample complexity: the magic of sensory cortex or a new framework for machine learning? CBMM Memo 001, Center for Brains Minds and Machines Massachusetts Institute of Technology.
Poggio T, Anselmi F, Rosasco L. 2015. I-theory on depth vs width: hierarchical function composition. CBMM Memo 041, Center for Brains Minds and Machines Massachusetts Institute of Technology.
Keysers C, Xiao DK, Földiák P, Perrett DI. The speed of sight. J Cogn Neurosci 2001;13(1): 90–101.
CAS
Article
PubMed
Google Scholar
Fabre-Thorpe M, Delorme A, Marlot C, Thorpe S. A limit to the speed of processing in ultra-rapid visual categorization of novel natural scenes. J Cogn Neurosci 2001;13:171–80.
CAS
Article
PubMed
Google Scholar
VanRullen R, Thorpe SJ. Is it a bird? is it a plane? ultra-rapid visual categorisation of natural and artifactual objects. Perception 2001;30:655–68.
CAS
Article
PubMed
Google Scholar
Oliva A, Torralba A. Building the gist of a scene: The role of global image features in recognition. Martinez-Conde, S, Macknik, SL, Martinez, LM, Alonso, J-M, and Tse, PU, editors, Progress in Brain Research: Visual Perception, volume 155, pages 23–36. Elsevier; 2006.
Hochstein S, Ahissar M. View from the top: hierarchies and reverse hierarchies in the visual system. Neuron 2002;36(5):791–804.
CAS
Article
PubMed
Google Scholar
Hinton GE, Osindero S, Teh Y. -W. A fast learning algorithm for deep belief nets. Neural Comput 2006; 18:1527–54.
Article
PubMed
Google Scholar
Hinton G, Salakhutdinov R. Reducing the dimensionality of data with neural networks. Science 2006;313 (5786):504–7.
CAS
Article
PubMed
Google Scholar
Vincent P, Larochelle H, Lajoie I, Bengio Y, Manzagol P. Stacked denoising autoencoders Leaning useful representations in a deep network with a local denoising criterion. J Mach Learn Res 2010;11:3371–408.
Google Scholar
Bengio Y, Courville A, Vincent P. Representation learning: A review and new perspectives. IEEE Trans Pattern Anal Mach Intell 2013;35(8):1798–828.
Article
PubMed
Google Scholar
Bengio Y. Learning deep architectures for AI. Foundations and Trends in Machine Learning 2009;2(1):1–127.
Article
Google Scholar
Thorpe SJ, Guyonneau R, Guilbaud N, Allegraud JM, VanRullen R. Spikenet Real-time visual processing with one spike per neuron. Neurocomputing 2004;58–60:857–64.
Article
Google Scholar
Wallis G, Rolls ET. Invariant face and object recognition in the visual system. Progress in Neurobiology 1997; 51(2):167–94.
CAS
Article
PubMed
Google Scholar
Hamidi M, Borji A. Invariance analysis of modified C2 features: case study—handwritten digit recognition. Mach Vis Appl 2010;21(6):969–79. doi:10.1007/s00138-009-0216-9.
Article
Google Scholar
Achler T. Symbolic neural networks for cognitive capacities. Biologically Inspired Cognitive Architectures 2014;9 (0):71–81. doi:10.1016/j.bica.2014.07.001.
Article
Google Scholar
Solbakken LL, Junge S. Online parts-based feature discovery using competitive activation neural networks. Proceedings of the International Joint Conference on Neural Networks; 2011. p. 1466–73.
Spratling MW. 2016e. A neural implementation of Bayesian inference based on predictive coding. submitted.
Muhammad W, Spratling MW. A neural model of binocular saccade planning and vergence control. Adapt Behav 2015;23(5):265–82. doi:10.1177/1059712315607363.
Article
Google Scholar
Yu K, Zhang T, Gong Y. Nonlinear learning using local coordinate coding. Bengio, Y, Schuurmans, D, Lafferty, JD, Williams, CKI, and Culotta, A, editors, Advances in Neural Information Processing Systems, volume 22, pages 2223–31. Curran Associates, Inc.; 2009.
Gong M, Liu J, Li H, Cai Q, Su L. A multiobjective sparse feature learning model for deep neural networks. IEEE Transactions on Neural Networks and Learning Systems 2015;26(12):3263–3277. doi:10.1109/TNNLS.2015.2469673.
Article
PubMed
Google Scholar
Zhang S, He B, Nian R, Wang J, Han B, Lendasse A, Yuan G. Fast image recognition based on independent component analysis and extreme learning machine. Cogn Compu 2014;6(3):405–422. doi:10.1007/s12559-014-9245-4.
Article
Google Scholar
Diehl P, Cook M. Unsupervised learning of digit recognition using spike-timing-dependent plasticity. Front Comput Neurosci 2015;9:99. doi:10.3389/fncom.2015.00099.
Article
PubMed
PubMed Central
Google Scholar
Neftci EO, Pedroni BU, Joshi S, Al-Shedivat M, Cauwenberghs G. Stochastic synapses enable efficient brain-inspired learning machines. Front Comput Neurosci 2016;10:241. doi:10.3389/fnins.2016.00241.
Google Scholar
Spratling MW. Classification using sparse representations: a biologically plausible approach. Biol Cybern 2014b; 108(1):61–73. doi:10.1007/s00422-013-0579-x.
CAS
Article
PubMed
Google Scholar
O’Connor P, Neil D, Liu S-C, Delbruck T, Pfeiffer M. Real-time classification and sensor fusion with a spiking deep belief network. Front Neurosci 2013;7:178. doi:10.3389/fnins.2013.00178.
Lv L, Zhao D, Deng Q. A semi-supervised predictive sparse decomposition based on task-driven dictionary learning. Cogn Comput 2016:1–10. doi:10.1007/s12559-016-9438-0.
LeCun Y, Jackel LD, Bottou L, Brunot A, Cartes C, Dencker J, Drucker H, Guyon I, Müller U, Säckinger E, Simard P, Vapnik V. Comparison of learning algorithms for handwritten digit recognition. Fogelman, F and Gallinari, P, editors, Proceedings of the International Conference on Artificial Neural Networks, pages 53–60. EC2 Cie Publishers, Paris, France; 1995.
Sprechmann P, Sapiro G. Dictionary learning and sparse coding for unsupervised clustering. In IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP); 2010. p. 2042–5.
Larochelle H, Bengio Y, Louradour J, Lamblin P. Exploring strategies for training deep neural networks. J Mach Learn Res 2009;1:1–40.
Google Scholar
Glorot X, Bordes A, Bengio Y. Deep sparse rectifier neural networks. Proceedings of the 14th International Conference on Artificial Intelligence and Statistics; 2011.
Mairal J, Bach F, Ponce J, Sapiro G, Zisserman A. Supervised dictionary learning. Koller, D, Schuurmans, D, Bengio, Y, and Bottou, L, editors, Advances in Neural Information Processing Systems, volume 21, pages 1033–40. Curran Associates, Inc.; 2008.
Salakhutdinov R, Hinton G. An efficient learning procedure for deep boltzmann machines. Neural Comput 2012;24(8):1967–2006.
Article
PubMed
Google Scholar
Cardoso A, Wichert A. Handwritten digit recognition using biologically inspired features. Neurocomputing 2013;99:575–80. doi:10.1016/j.neucom.2012.07.027.
Article
Google Scholar
Ranzato MA, Huang FJ, Boureau Y, LeCun Y. Unsupervised learning of invariant feature hierarchies with applications to object recognition. Inproceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pages 1–8 IEEE Press; 2007.
Mairal J, Bach F, Ponce J. Task-driven dictionary learning. IEEE Trans Pattern Anal Mach Intell 2012; 32(4):791–804.
Article
Google Scholar
Ciresan DC, Meier U, Gambardella LM, Schmidhuber J. Deep, big, simple neural nets for handwritten digit recognition. Neural Comput 2010;22(12):3207–20.
Article
PubMed
Google Scholar
Hinton GE. Training products of experts by minimizing contrastive divergence. Neural Comput 2002;14(8): 1711–1800.
Article
Google Scholar
Teh YW, Welling M, Osindero S, Hinton GE. Energy-based models for sparse overcomplete representations. J Mach Learn Res 2003;4:1235–60.
Google Scholar
He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition; 2016.
Georghiades AS, Belhumeur PN, Kriegman DJ. From few to many Illumination cone models for face recognition under variable lighting and pose. IEEE Trans Pattern Anal Mach Intell 2001;23(6):643–60.
Article
Google Scholar
Lee KC, Ho J, Kriegman D. Acquiring linear subspaces for face recognition under variable lighting. IEEE Trans Pattern Anal Mach Intell 2005;27(5):684–98.
Article
PubMed
Google Scholar
Wright J, Yang AY, Ganesh A, Sastry SS, Ma Y. Robust face recognition via sparse representation. IEEE Trans Pattern Anal Mach Intell 2009;31(2):210–27.
Article
PubMed
Google Scholar
Zhang L, Yang M, Feng X. Sparse representation or collaborative representation Which helps face recognition? Proceedings of the International Conference on Computer Vision; 2011. p. 471–8.
Jiang Z, Lin Z, Davis LS. Learning a discriminative dictionary for sparse coding via label consistent K-SVD. Inproceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition; 2011.
Jiang Z, Lin Z, Davis LS. Label consistent K-SVD: Learning a discriminative dictionary for recognition. IEEE Trans Pattern Anal Mach Intell 2013;35(11):2651–64.
Article
PubMed
Google Scholar
Zhang Q, Li B. Discriminative k-svd for dictionary learning in face recognition. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pages 2691–2698; 2010, doi:10.1109/CVPR.2010.5539989.
Yang M, Zhang L, Feng X, Zhang D. Fisher discrimination dictionary learning for sparse representation. Proceedings of the International Conference on Computer Vision; 2011. p. 543–50.
Zhang H, Zhang Y, Huang TS. Simultansous discriminative projection and dictionary learning for sparse represntation based classification. Pattern Recogn 2013;46:346–54.
Article
Google Scholar
Chiang C-K, Liu C-H, Duan C-H, Lai S-H. Learning component-level sparse representation for image and video categorization. IEEE Trans Image Process 2013;22(12):4775–87. doi:10.1109/TIP.2013.2277825.
Article
PubMed
Google Scholar
Agarwal S, Awan A, Roth D. Learning to detect objects in images via a sparse, part-based representation. IEEE Trans Pattern Anal Mach Intell 2004;26(11):1475–90.
Article
PubMed
Google Scholar
Agarwal S, Roth D. Learning a sparse representation for object detection. Proceedings of the European Conference on Computer Vision, volume IV, pages 113–30; 2002.
Georgopoulos AP, Schwartz AB, Kettner RE. Neuronal population coding of movement direction. Science 1986;233:1416–9.
CAS
Article
PubMed
Google Scholar
Leibe B, Leonardis A, Schiele B. Robust object detection with interleaved categorization and segmentation. Int J Comput Vis 2008;77(1-3):259–89.
Article
Google Scholar
Gall J, Yao A, Razavi N, Van Gool L, Lempitsky, V. Hough forests for object detection, tracking, and action recognition. IEEE Trans Pattern Anal Mach Intell 2011;33(11):2188–202.
Gall J, Lempitsky V. Class-specific Hough forests for object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition; 2009.
Okada R. Discriminative generalized Hough transform for object dectection. Proceedings of the International Conference on Computer Vision, pages 2000–2005; 2009. doi:10.1109/ICCV.2009.5459441.
Lampert C, Blaschko M, Hofmann T. Beyond sliding windows Object localization by efficient subwindow search. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition; 2008.
Karlinsky L, Dinerstein M, Daniel H, Ullman S. The chains model for detecting parts by their context. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition; 2010.
Mutch J, Lowe, DG . Multiclass object recognition with sparse, localized features; 2006.
Lin Y, Lu N, Lou X, Zou F, Yao Y, Du Z. Invariant Hough random ferns for object detection and tracking. Math Probl Eng 2014;20(513283). doi:10.1155/2014/513283.
Lehmann A, Leibe B, Gool LV. Fast PRISM: Branch and bound Hough transform for object class detection. journal=Int J Comput Vis, 2011;94(2):175–197. doi:10.1007/s11263-010-0342-x.
Ballard DH. Generalizing the Hough transform to detect arbitrary shapes. Pattern Recogn 1981;13(2):111–22.
Article
Google Scholar
Duda RO, Hart PE. Use of the Hough transformation to detect lines and curves in pictures. Communications of the ACM 1972;15(1):11–5.
Article
Google Scholar
Hough PVC. 1962. Method and means for recognizing complex patterns. U.S. Patent 3 069 654.