Andres V, Gonzalez JM (2009) Role of A-type lamins in signaling, transcription, and chromatin organization. J Cell Biol 187:945–957. https://doi.org/10.1083/jcb.200904124
PubMed
PubMed Central
CAS
Article
Google Scholar
Apel ED, Lewis RM, Grady RM, Sanes JR (2000) Syne-1, a dystrophin- and Klarsicht-related protein associated with synaptic nuclei at the neuromuscular junction. J Biol Chem 275:31986–31995. https://doi.org/10.1074/jbc.M004775200
PubMed
CAS
Article
Google Scholar
Arimura T et al (2005) Mouse model carrying H222P-Lmna mutation develops muscular dystrophy and dilated cardiomyopathy similar to human striated muscle laminopathies. Hum Mol Genet 14:155–169. https://doi.org/10.1093/hmg/ddi017
PubMed
CAS
Article
Google Scholar
Astejada MN et al (2007) Emerinopathy and laminopathy clinical, pathological and molecular features of muscular dystrophy with nuclear envelopathy in Japan. Acta Myol 26:159–164
PubMed
PubMed Central
CAS
Google Scholar
Banerjee I et al (2014) Targeted ablation of nesprin 1 and nesprin 2 from murine myocardium results in cardiomyopathy, altered nuclear morphology and inhibition of the biomechanical gene response. PLoS Genet 10:e1004114. https://doi.org/10.1371/journal.pgen.1004114
PubMed
PubMed Central
CAS
Article
Google Scholar
Barkan R et al (2012) Ce-emerin and LEM-2: essential roles in Caenorhabditis elegans development, muscle function, and mitosis. Mol Biol Cell 23:543–552. https://doi.org/10.1091/mbc.E11-06-0505
PubMed
PubMed Central
CAS
Article
Google Scholar
Barrales RR, Forn M, Georgescu PR, Sarkadi Z, Braun S (2016) Control of heterochromatin localization and silencing by the nuclear membrane protein Lem2. Genes Dev 30:133–148. https://doi.org/10.1101/gad.271288.115
PubMed
PubMed Central
CAS
Article
Google Scholar
Bengtsson L, Otto H (2008) LUMA interacts with emerin and influences its distribution at the inner nuclear membrane. J Cell Sci 121:536–548. https://doi.org/10.1242/jcs.019281
PubMed
CAS
Article
Google Scholar
Berger R et al (1996) The characterization and localization of the mouse thymopoietin/lamina-associated polypeptide 2 gene and its alternatively spliced products. Genome Res 6:361–370
PubMed
CAS
Article
Google Scholar
Berk JM, Tifft KE, Wilson KL (2013) The nuclear envelope LEM-domain protein emerin. Nucleus 4:298–314. https://doi.org/10.4161/nucl.25751
PubMed
PubMed Central
Article
Google Scholar
Berk JM, Simon DN, Jenkins-Houk CR, Westerbeck JW, Gronning-Wang LM, Carlson CR, Wilson KL (2014) The molecular basis of emerin-emerin and emerin-BAF interactions. J Cell Sci 127:3956–3969. https://doi.org/10.1242/jcs.148247
PubMed
PubMed Central
CAS
Article
Google Scholar
Bione S, Maestrini E, Rivella S, Mancini M, Regis S, Romeo G, Toniolo D (1994) Identification of a novel X-linked gene responsible for Emery-Dreifuss muscular dystrophy. Nat Genet 8:323–327. https://doi.org/10.1038/ng1294-323
PubMed
CAS
Article
Google Scholar
Bione S et al (1995) Identification of new mutations in the Emery-Dreifuss muscular dystrophy gene and evidence for genetic heterogeneity of the disease. Hum Mol Genet 4:1859–1863
PubMed
CAS
Article
Google Scholar
Bonne G et al (1999) Mutations in the gene encoding lamin A/C cause autosomal dominant Emery-Dreifuss muscular dystrophy. Nat Genet 21:285–288. https://doi.org/10.1038/6799
PubMed
CAS
Article
Google Scholar
Bonne G et al (2000) Clinical and molecular genetic spectrum of autosomal dominant Emery-Dreifuss muscular dystrophy due to mutations of the lamin A/C gene. Ann Neurol 48:170–180
PubMed
CAS
Article
Google Scholar
Boone PM et al (2016) Hutterite-type cataract maps to chromosome 6p21.32-p21.31, cosegregates with a homozygous mutation in LEMD2, and is associated with sudden cardiac death. Mol Genet Genomic Med 4:77–94. https://doi.org/10.1002/mgg3.181
PubMed
CAS
Article
Google Scholar
Bourgeois B et al (2013) Inhibition of TGF-beta signaling at the nuclear envelope: characterization of interactions between MAN1, Smad2 and Smad3, and PPM1A. Sci Signal 6:ra49. https://doi.org/10.1126/scisignal.2003411
PubMed
CAS
Article
Google Scholar
Brachner A, Reipert S, Foisner R, Gotzmann J (2005) LEM2 is a novel MAN1-related inner nuclear membrane protein associated with A-type lamins. J Cell Sci 118:5797–5810. https://doi.org/10.1242/jcs.02701
PubMed
CAS
Article
Google Scholar
Breckenridge R, Kotecha S, Towers N, Bennett M, Mohun T (2007) Pan-myocardial expression of Cre recombinase throughout mouse development. Genesis 45:135–144. https://doi.org/10.1002/dvg.20275
PubMed
CAS
Article
Google Scholar
Broers JL, Machiels BM, Kuijpers HJ, Smedts F, van den Kieboom R, Raymond Y, Ramaekers FC (1997) A- and B-type lamins are differentially expressed in normal human tissues. Histochem Cell Biol 107:505–517
PubMed
CAS
Article
Google Scholar
Broers JL et al (2004) Decreased mechanical stiffness in LMNA-/- cells is caused by defective nucleo-cytoskeletal integrity: implications for the development of laminopathies. Hum Mol Genet 13:2567–2580. https://doi.org/10.1093/hmg/ddh295
PubMed
CAS
Article
Google Scholar
Brohawn SG, Partridge JR, Whittle JR, Schwartz TU (2009) The nuclear pore complex has entered the atomic age. Structure 17:1156–1168. https://doi.org/10.1016/j.str.2009.07.014
PubMed
PubMed Central
CAS
Article
Google Scholar
Brown CA et al (2001) Novel and recurrent mutations in lamin A/C in patients with Emery-Dreifuss muscular dystrophy. Am J Med Genet 102:359–367
PubMed
CAS
Article
Google Scholar
Burke B, Stewart CL (2013) The nuclear lamins: flexibility in function. Nat Rev Mol Cell Biol 14:13–24. https://doi.org/10.1038/nrm3488
PubMed
CAS
Article
Google Scholar
Cai M, Huang Y, Ghirlando R, Wilson KL, Craigie R, Clore GM (2001) Solution structure of the constant region of nuclear envelope protein LAP2 reveals two LEM-domain structures: one binds BAF and the other binds DNA. EMBO J 20:4399–4407. https://doi.org/10.1093/emboj/20.16.4399
PubMed
PubMed Central
CAS
Article
Google Scholar
Cai M, Huang Y, Suh JY, Louis JM, Ghirlando R, Craigie R, Clore GM (2007) Solution NMR structure of the barrier-to-autointegration factor-Emerin complex. J Biol Chem 282:14525–14535. https://doi.org/10.1074/jbc.M700576200
PubMed
CAS
Article
Google Scholar
Captur G et al (2018) Lamin and the heart. Heart 104:468–479. https://doi.org/10.1136/heartjnl-2017-312338
PubMed
Article
Google Scholar
Caputo S et al (2006) The carboxyl-terminal nucleoplasmic region of MAN1 exhibits a DNA binding winged helix domain. J Biol Chem 281:18208–18215. https://doi.org/10.1074/jbc.M601980200
PubMed
CAS
Article
Google Scholar
Cartegni L et al (1997) Heart-specific localization of emerin: new insights into Emery-Dreifuss muscular dystrophy. Hum Mol Genet 6:2257–2264
PubMed
CAS
Article
Google Scholar
Cattin ME et al (2013) Heterozygous LmnadelK32 mice develop dilated cardiomyopathy through a combined pathomechanism of haploinsufficiency and peptide toxicity. Hum Mol Genet 22:3152–3164. https://doi.org/10.1093/hmg/ddt172
PubMed
CAS
Article
Google Scholar
Chen IH, Huber M, Guan T, Bubeck A, Gerace L (2006) Nuclear envelope transmembrane proteins (NETs) that are up-regulated during myogenesis. BMC Cell Biol 7:38. https://doi.org/10.1186/1471-2121-7-38
PubMed
PubMed Central
CAS
Article
Google Scholar
Chen CY et al (2012) Accumulation of the inner nuclear envelope protein Sun1 is pathogenic in progeric and dystrophic laminopathies. Cell 149:565–577. https://doi.org/10.1016/j.cell.2012.01.059
PubMed
PubMed Central
CAS
Article
Google Scholar
Cho S, Irianto J, Discher DE (2017) Mechanosensing by the nucleus: from pathways to scaling relationships. J Cell Biol 216:305–315. https://doi.org/10.1083/jcb.201610042
PubMed
PubMed Central
CAS
Article
Google Scholar
Christensen AH, Andersen CB, Tybjaerg-Hansen A, Haunso S, Svendsen JH (2011) Mutation analysis and evaluation of the cardiac localization of TMEM43 in arrhythmogenic right ventricular cardiomyopathy. Clin Genet 80:256–264. https://doi.org/10.1111/j.1399-0004.2011.01623.x
PubMed
CAS
Article
Google Scholar
Coffinier C et al (2010) Abnormal development of the cerebral cortex and cerebellum in the setting of lamin B2 deficiency. Proc Natl Acad Sci U S A 107:5076–5081. https://doi.org/10.1073/pnas.0908790107
PubMed
PubMed Central
Article
Google Scholar
Cohen TV, Kosti O, Stewart CL (2007) The nuclear envelope protein MAN1 regulates TGFbeta signaling and vasculogenesis in the embryonic yolk sac. Development 134:1385–1395. https://doi.org/10.1242/dev.02816
PubMed
CAS
Article
Google Scholar
Colomer J et al (2002) Autosomal dominant Emery-Dreifuss muscular dystrophy: a new family with late diagnosis. Neuromuscul Disord 12:19–25
PubMed
CAS
Article
Google Scholar
Crisp M et al (2006) Coupling of the nucleus and cytoplasm: role of the LINC complex. J Cell Biol 172:41–53. https://doi.org/10.1083/jcb.200509124
PubMed
PubMed Central
CAS
Article
Google Scholar
Cupesi M, Yoshioka J, Gannon J, Kudinova A, Stewart CL, Lammerding J (2010) Attenuated hypertrophic response to pressure overload in a lamin A/C haploinsufficiency mouse. J Mol Cell Cardiol 48:1290–1297. https://doi.org/10.1016/j.yjmcc.2009.10.024
PubMed
CAS
Article
Google Scholar
Dechat T, Gotzmann J, Stockinger A, Harris CA, Talle MA, Siekierka JJ, Foisner R (1998) Detergent-salt resistance of LAP2alpha in interphase nuclei and phosphorylation-dependent association with chromosomes early in nuclear assembly implies functions in nuclear structure dynamics. EMBO J 17:4887–4902. https://doi.org/10.1093/emboj/17.16.4887
PubMed
PubMed Central
CAS
Article
Google Scholar
Dechat T, Korbei B, Vaughan OA, Vlcek S, Hutchison CJ, Foisner R (2000) Lamina-associated polypeptide 2alpha binds intranuclear A-type lamins. J Cell Sci 113(Pt 19):3473–3484
PubMed
CAS
Google Scholar
Dechat T, Pfleghaar K, Sengupta K, Shimi T, Shumaker DK, Solimando L, Goldman RD (2008) Nuclear lamins: major factors in the structural organization and function of the nucleus and chromatin. Genes Dev 22:832–853. https://doi.org/10.1101/gad.1652708
PubMed
PubMed Central
CAS
Article
Google Scholar
Dellefave L, McNally EM (2010) The genetics of dilated cardiomyopathy. Curr Opin Cardiol 25:198–204. https://doi.org/10.1097/HCO.0b013e328337ba52
PubMed
PubMed Central
Article
Google Scholar
Demmerle J, Koch AJ, Holaska JM (2012) The nuclear envelope protein emerin binds directly to histone deacetylase 3 (HDAC3) and activates HDAC3 activity. J Biol Chem 287:22080–22088. https://doi.org/10.1074/jbc.M111.325308
PubMed
PubMed Central
CAS
Article
Google Scholar
Ding X, Xu R, Yu J, Xu T, Zhuang Y, Han M (2007) SUN1 is required for telomere attachment to nuclear envelope and gametogenesis in mice. Dev Cell 12:863–872. https://doi.org/10.1016/j.devcel.2007.03.018
PubMed
CAS
Article
Google Scholar
Dorboz I et al (2014) Severe dystonia, cerebellar atrophy, and cardiomyopathy likely caused by a missense mutation in TOR1AIP1. Orphanet J Rare Dis 9:174. https://doi.org/10.1186/s13023-014-0174-9
PubMed
PubMed Central
Article
Google Scholar
Dreger M, Bengtsson L, Schoneberg T, Otto H, Hucho F (2001) Nuclear envelope proteomics: novel integral membrane proteins of the inner nuclear membrane. Proc Natl Acad Sci U S A 98:11943–11948. https://doi.org/10.1073/pnas.211201898
PubMed
PubMed Central
CAS
Article
Google Scholar
Duong NT, Morris GE, Lam le T, Zhang Q, Sewry CA, Shanahan CM, Holt I (2014) Nesprins: tissue-specific expression of epsilon and other short isoforms. PLoS One 9:e94380. https://doi.org/10.1371/journal.pone.0094380
PubMed
PubMed Central
CAS
Article
Google Scholar
Fatkin D et al (1999) Missense mutations in the rod domain of the lamin A/C gene as causes of dilated cardiomyopathy and conduction-system disease. N Engl J Med 341:1715–1724. https://doi.org/10.1056/NEJM199912023412302
PubMed
CAS
Article
Google Scholar
Fidzianska A, Hausmanowa-Petrusewicz I (2003) Architectural abnormalities in muscle nuclei. Ultrastructural differences between X-linked and autosomal dominant forms of EDMD. J Neurol Sci 210:47–51
PubMed
Article
Google Scholar
Fisher DZ, Chaudhary N, Blobel G (1986) cDNA sequencing of nuclear lamins A and C reveals primary and secondary structural homology to intermediate filament proteins. Proc Natl Acad Sci U S A 83:6450–6454
PubMed
PubMed Central
CAS
Article
Google Scholar
Foisner R, Gerace L (1993) Integral membrane proteins of the nuclear envelope interact with lamins and chromosomes, and binding is modulated by mitotic phosphorylation. Cell 73:1267–1279
PubMed
CAS
Article
Google Scholar
Folker ES, Ostlund C, Luxton GW, Worman HJ, Gundersen GG (2011) Lamin A variants that cause striated muscle disease are defective in anchoring transmembrane actin-associated nuclear lines for nuclear movement. Proc Natl Acad Sci U S A 108:131–136. https://doi.org/10.1073/pnas.1000824108
PubMed
Article
Google Scholar
Franke WW, Dorflinger Y, Kuhn C, Zimbelmann R, Winter-Simanowski S, Frey N, Heid H (2014) Protein LUMA is a cytoplasmic plaque constituent of various epithelial adherens junctions and composite junctions of myocardial intercalated disks: a unifying finding for cell biology and cardiology. Cell Tissue Res 357:159–172. https://doi.org/10.1007/s00441-014-1865-1
PubMed
CAS
Article
Google Scholar
Frohnert C, Schweizer S, Hoyer-Fender S (2011) SPAG4L/SPAG4L-2 are testis-specific SUN domain proteins restricted to the apical nuclear envelope of round spermatids facing the acrosome. Mol Hum Reprod 17:207–218. https://doi.org/10.1093/molehr/gaq099
PubMed
CAS
Article
Google Scholar
Furukawa K, Fritze CE, Gerace L (1998) The major nuclear envelope targeting domain of LAP2 coincides with its lamin binding region but is distinct from its chromatin interaction domain. J Biol Chem 273:4213–4219
PubMed
CAS
Article
Google Scholar
Gerace L, Huber MD (2012) Nuclear lamina at the crossroads of the cytoplasm and nucleus. J Struct Biol 177:24–31. https://doi.org/10.1016/j.jsb.2011.11.007
PubMed
CAS
Article
Google Scholar
Gerace L, Tapia O (2018) Messages from the voices within: regulation of signaling by proteins of the nuclear lamina. Curr Opin Cell Biol 52:14–21. https://doi.org/10.1016/j.ceb.2017.12.009
PubMed
PubMed Central
CAS
Article
Google Scholar
Gerace L, Blum A, Blobel G (1978) Immunocytochemical localization of the major polypeptides of the nuclear pore complex-lamina fraction. Interphase and mitotic distribution. J Cell Biol 79:546–566
PubMed
CAS
Article
Google Scholar
Gob E, Schmitt J, Benavente R, Alsheimer M (2010) Mammalian sperm head formation involves different polarization of two novel LINC complexes. PLoS One 5:e12072. https://doi.org/10.1371/journal.pone.0012072
PubMed
PubMed Central
CAS
Article
Google Scholar
Gob E, Meyer-Natus E, Benavente R, Alsheimer M (2011) Expression of individual mammalian Sun1 isoforms depends on the cell type. Commun Integr Biol 4:440–442. https://doi.org/10.4161/cib.4.4.15369
PubMed
PubMed Central
Article
Google Scholar
Goodchild RE, Dauer WT (2005) The AAA+ protein torsinA interacts with a conserved domain present in LAP1 and a novel ER protein. J Cell Biol 168:855–862. https://doi.org/10.1083/jcb.200411026
PubMed
PubMed Central
CAS
Article
Google Scholar
Gorlich D, Kutay U (1999) Transport between the cell nucleus and the cytoplasm. Annu Rev Cell Dev Biol 15:607–660. https://doi.org/10.1146/annurev.cellbio.15.1.607
PubMed
CAS
Article
Google Scholar
Gotic I et al (2010) Lamina-associated polypeptide 2alpha loss impairs heart function and stress response in mice. Circ Res 106:346–353. https://doi.org/10.1161/CIRCRESAHA.109.205724
PubMed
CAS
Article
Google Scholar
Grossman E, Medalia O, Zwerger M (2012) Functional architecture of the nuclear pore complex. Annu Rev Biophys 41:557–584. https://doi.org/10.1146/annurev-biophys-050511-102328
PubMed
CAS
Article
Google Scholar
Hagan I, Yanagida M (1995) The product of the spindle formation gene sad1+ associates with the fission yeast spindle pole body and is essential for viability. J Cell Biol 129:1033–1047
PubMed
CAS
Article
Google Scholar
Haque F et al (2006) SUN1 interacts with nuclear lamin A and cytoplasmic nesprins to provide a physical connection between the nuclear lamina and the cytoskeleton. Mol Cell Biol 26:3738–3751. https://doi.org/10.1128/MCB.26.10.3738-3751.2006
PubMed
PubMed Central
CAS
Article
Google Scholar
Haque F, Mazzeo D, Patel JT, Smallwood DT, Ellis JA, Shanahan CM, Shackleton S (2010) Mammalian SUN protein interaction networks at the inner nuclear membrane and their role in laminopathy disease processes. J Biol Chem 285:3487–3498. https://doi.org/10.1074/jbc.M109.071910
PubMed
CAS
Article
Google Scholar
Harris CA, Andryuk PJ, Cline S, Chan HK, Natarajan A, Siekierka JJ, Goldstein G (1994) Three distinct human thymopoietins are derived from alternatively spliced mRNAs. Proc Natl Acad Sci U S A 91:6283–6287
PubMed
PubMed Central
CAS
Article
Google Scholar
Haskell GT et al (2017) Whole exome sequencing identifies truncating variants in nuclear envelope genes in patients with cardiovascular disease. Circ Cardiovasc Genet 10. https://doi.org/10.1161/CIRCGENETICS.116.001443
Haywood AF et al (2013) Recurrent missense mutations in TMEM43 (ARVD5) due to founder effects cause arrhythmogenic cardiomyopathies in the UK and Canada. Eur Heart J 34:1002–1011. https://doi.org/10.1093/eurheartj/ehs383
PubMed
CAS
Article
Google Scholar
Hellemans J et al (2004) Loss-of-function mutations in LEMD3 result in osteopoikilosis, Buschke-Ollendorff syndrome and melorheostosis. Nat Genet 36:1213–1218. https://doi.org/10.1038/ng1453
PubMed
CAS
Article
Google Scholar
Hennen J, Saunders CA, Mueller JD, Luxton GWG (2018) Fluorescence fluctuation spectroscopy reveals differential SUN protein oligomerization in living cells. Mol Biol Cell 29:1003–1011. https://doi.org/10.1091/mbc.E17-04-0233
PubMed
PubMed Central
Article
Google Scholar
Hershberger RE, Hedges DJ, Morales A (2013) Dilated cardiomyopathy: the complexity of a diverse genetic architecture. Nat Rev Cardiol 10:531–547. https://doi.org/10.1038/nrcardio.2013.105
PubMed
CAS
Article
Google Scholar
Ho CY, Jaalouk DE, Vartiainen MK, Lammerding J (2013) Lamin A/C and emerin regulate MKL1-SRF activity by modulating actin dynamics. Nature 497:507–511. https://doi.org/10.1038/nature12105
PubMed
PubMed Central
CAS
Article
Google Scholar
Hodgkinson KA et al (2013) The natural history of a genetic subtype of arrhythmogenic right ventricular cardiomyopathy caused by a p.S358L mutation in TMEM43. Clin Genet 83:321–331. https://doi.org/10.1111/j.1399-0004.2012.01919.x
PubMed
CAS
Article
Google Scholar
Hodgkinson KA et al (2016) Long-term clinical outcome of arrhythmogenic right ventricular cardiomyopathy in individuals with a p.S358L mutation in TMEM43 following implantable cardioverter defibrillator therapy. Circ Arrhythm Electrophysiol 9. https://doi.org/10.1161/CIRCEP.115.003589
Hoger TH, Zatloukal K, Waizenegger I, Krohne G (1990) Characterization of a second highly conserved B-type lamin present in cells previously thought to contain only a single B-type lamin. Chromosoma 100:67–69
PubMed
CAS
Article
Google Scholar
Holaska JM (2008) Emerin and the nuclear lamina in muscle and cardiac disease. Circ Res 103:16–23. https://doi.org/10.1161/CIRCRESAHA.108.172197
PubMed
CAS
Article
Google Scholar
Holaska JM, Wilson KL, Mansharamani M (2002) The nuclear envelope, lamins and nuclear assembly. Curr Opin Cell Biol 14:357–364
PubMed
CAS
Article
Google Scholar
Holt I et al (2016) Specific localization of nesprin-1-alpha2, the short isoform of nesprin-1 with a KASH domain, in developing, fetal and regenerating muscle, using a new monoclonal antibody. BMC Cell Biol 17:26. https://doi.org/10.1186/s12860-016-0105-9
PubMed
PubMed Central
CAS
Article
Google Scholar
Honda T, Kanai Y, Ohno S, Ando H, Honda M, Niwano S, Ishii M (2016) Fetal arrhythmogenic right ventricular cardiomyopathy with double mutations in TMEM43. Pediatr Int 58:409–411. https://doi.org/10.1111/ped.12832
PubMed
CAS
Article
Google Scholar
Huber MD, Guan T, Gerace L (2009) Overlapping functions of nuclear envelope proteins NET25 (Lem2) and emerin in regulation of extracellular signal-regulated kinase signaling in myoblast differentiation. Mol Cell Biol 29:5718–5728. https://doi.org/10.1128/MCB.00270-09
PubMed
PubMed Central
CAS
Article
Google Scholar
Ishimura A, Ng JK, Taira M, Young SG, Osada S (2006) Man1, an inner nuclear membrane protein, regulates vascular remodeling by modulating transforming growth factor beta signaling. Development 133:3919–3928. https://doi.org/10.1242/dev.02538
PubMed
CAS
Article
Google Scholar
Ishimura A, Chida S, Osada S (2008) Man1, an inner nuclear membrane protein, regulates left-right axis formation by controlling nodal signaling in a node-independent manner. Dev Dyn 237:3565–3576. https://doi.org/10.1002/dvdy.21663
PubMed
CAS
Article
Google Scholar
Jaalouk DE, Lammerding J (2009) Mechanotransduction gone awry. Nat Rev Mol Cell Biol 10:63–73. https://doi.org/10.1038/nrm2597
PubMed
PubMed Central
CAS
Article
Google Scholar
Jahed Z, Fadavi D, Vu UT, Asgari E, Luxton GWG, Mofrad MRK (2018) Molecular insights into the mechanisms of SUN1 oligomerization in the nuclear envelope. Biophys J 114:1190–1203. https://doi.org/10.1016/j.bpj.2018.01.015
PubMed
CAS
Article
Google Scholar
Jahn D et al (2012) A truncated lamin A in the Lmna -/- mouse line: implications for the understanding of laminopathies. Nucleus 3:463–474. https://doi.org/10.4161/nucl.21676
PubMed
PubMed Central
Article
Google Scholar
Jiang C et al (2017) TMEM43/LUMA is a key signaling component mediating EGFR-induced NF-kappaB activation and tumor progression. Oncogene 36:2813–2823. https://doi.org/10.1038/onc.2016.430
PubMed
CAS
Article
Google Scholar
Jungwirth M, Dear ML, Brown P, Holbrook K, Goodchild R (2010) Relative tissue expression of homologous torsinB correlates with the neuronal specific importance of DYT1 dystonia-associated torsinA. Hum Mol Genet 19:888–900. https://doi.org/10.1093/hmg/ddp557
PubMed
CAS
Article
Google Scholar
Kayman-Kurekci G et al (2014) Mutation in TOR1AIP1 encoding LAP1B in a form of muscular dystrophy: a novel gene related to nuclear envelopathies. Neuromuscul Disord 24:624–633. https://doi.org/10.1016/j.nmd.2014.04.007
PubMed
Article
Google Scholar
Ketema M, Wilhelmsen K, Kuikman I, Janssen H, Hodzic D, Sonnenberg A (2007) Requirements for the localization of nesprin-3 at the nuclear envelope and its interaction with plectin. J Cell Sci 120:3384–3394. https://doi.org/10.1242/jcs.014191
PubMed
CAS
Article
Google Scholar
Ketema M, Kreft M, Secades P, Janssen H, Sonnenberg A (2013) Nesprin-3 connects plectin and vimentin to the nuclear envelope of Sertoli cells but is not required for Sertoli cell function in spermatogenesis. Mol Biol Cell 24:2454–2466. https://doi.org/10.1091/mbc.E13-02-0100
PubMed
PubMed Central
CAS
Article
Google Scholar
Khatau SB et al (2012) The distinct roles of the nucleus and nucleus-cytoskeleton connections in three-dimensional cell migration. Sci Rep 2:488. https://doi.org/10.1038/srep00488
PubMed
PubMed Central
CAS
Article
Google Scholar
Kim DI, Roux KJ (2016) Filling the void: proximity-based labeling of proteins in living cells. Trends Cell Biol 26:804–817. https://doi.org/10.1016/j.tcb.2016.09.004
PubMed
PubMed Central
CAS
Article
Google Scholar
Kim CE, Perez A, Perkins G, Ellisman MH, Dauer WT (2010) A molecular mechanism underlying the neural-specific defect in torsinA mutant mice. Proc Natl Acad Sci U S A 107:9861–9866. https://doi.org/10.1073/pnas.0912877107
PubMed
PubMed Central
Article
Google Scholar
Kim DI, Jensen SC, Noble KA, Kc B, Roux KH, Motamedchaboki K, Roux KJ (2016) An improved smaller biotin ligase for BioID proximity labeling. Mol Biol Cell 27:1188–1196. https://doi.org/10.1091/mbc.E15-12-0844
PubMed
PubMed Central
CAS
Article
Google Scholar
Kubben N et al (2011) Post-natal myogenic and adipogenic developmental: defects and metabolic impairment upon loss of A-type lamins. Nucleus 2:195–207. https://doi.org/10.4161/nucl.2.3.15731
PubMed
PubMed Central
Article
Google Scholar
Lammerding J et al (2004) Lamin A/C deficiency causes defective nuclear mechanics and mechanotransduction. J Clin Invest 113:370–378. https://doi.org/10.1172/JCI19670
PubMed
PubMed Central
CAS
Article
Google Scholar
Lammerding J, Hsiao J, Schulze PC, Kozlov S, Stewart CL, Lee RT (2005) Abnormal nuclear shape and impaired mechanotransduction in emerin-deficient cells. J Cell Biol 170:781–791. https://doi.org/10.1083/jcb.200502148
PubMed
PubMed Central
CAS
Article
Google Scholar
Lee KK, Haraguchi T, Lee RS, Koujin T, Hiraoka Y, Wilson KL (2001) Distinct functional domains in emerin bind lamin A and DNA-bridging protein BAF. J Cell Sci 114:4567–4573
PubMed
CAS
Google Scholar
Lei K et al (2009) SUN1 and SUN2 play critical but partially redundant roles in anchoring nuclei in skeletal muscle cells in mice. Proc Natl Acad Sci U S A 106:10207–10212. https://doi.org/10.1073/pnas.0812037106
PubMed
PubMed Central
Article
Google Scholar
Liang WC, Mitsuhashi H, Keduka E, Nonaka I, Noguchi S, Nishino I, Hayashi YK (2011) TMEM43 mutations in Emery-Dreifuss muscular dystrophy-related myopathy. Ann Neurol 69:1005–1013. https://doi.org/10.1002/ana.22338
PubMed
CAS
Article
Google Scholar
Lin F, Worman HJ (1995) Structural organization of the human gene (LMNB1) encoding nuclear lamin B1. Genomics 27:230–236. https://doi.org/10.1006/geno.1995.1036
PubMed
CAS
Article
Google Scholar
Lin F et al (2000) MAN1, an inner nuclear membrane protein that shares the LEM domain with lamina-associated polypeptide 2 and emerin. J Biol Chem 275:4840–4847
PubMed
CAS
Article
Google Scholar
Lin F, Morrison JM, Wu W, Worman HJ (2005) MAN1, an integral protein of the inner nuclear membrane, binds Smad2 and Smad3 and antagonizes transforming growth factor-beta signaling. Hum Mol Genet 14:437–445. https://doi.org/10.1093/hmg/ddi040
PubMed
CAS
Article
Google Scholar
Liu J, Lee KK, Segura-Totten M, Neufeld E, Wilson KL, Gruenbaum Y (2003) MAN1 and emerin have overlapping function(s) essential for chromosome segregation and cell division in Caenorhabditis elegans. Proc Natl Acad Sci U S A 100:4598–4603. https://doi.org/10.1073/pnas.0730821100
PubMed
PubMed Central
CAS
Article
Google Scholar
Lombardi ML, Lammerding J (2011) Keeping the LINC: the importance of nucleocytoskeletal coupling in intracellular force transmission and cellular function. Biochem Soc Trans 39:1729–1734. https://doi.org/10.1042/BST20110686
PubMed
PubMed Central
CAS
Article
Google Scholar
Lu D, Lian H, Zhang X, Shao H, Huang L, Qin C, Zhang L (2010) LMNA E82K mutation activates FAS and mitochondrial pathways of apoptosis in heart tissue specific transgenic mice. PLoS One 5:e15167. https://doi.org/10.1371/journal.pone.0015167
PubMed
PubMed Central
CAS
Article
Google Scholar
Malone CJ, Fixsen WD, Horvitz HR, Han M (1999) UNC-84 localizes to the nuclear envelope and is required for nuclear migration and anchoring during C. elegans development. Development 126:3171–3181
PubMed
CAS
Google Scholar
Manilal S, Nguyen TM, Sewry CA, Morris GE (1996) The Emery-Dreifuss muscular dystrophy protein, emerin, is a nuclear membrane protein. Hum Mol Genet 5:801–808
PubMed
CAS
Article
Google Scholar
Margalit A, Neufeld E, Feinstein N, Wilson KL, Podbilewicz B, Gruenbaum Y (2007) Barrier to autointegration factor blocks premature cell fusion and maintains adult muscle integrity in C. elegans. J Cell Biol 178:661–673. https://doi.org/10.1083/jcb.200704049
PubMed
PubMed Central
CAS
Article
Google Scholar
Mattout-Drubezki A, Gruenbaum Y (2003) Dynamic interactions of nuclear lamina proteins with chromatin and transcriptional machinery. Cell Mol Life Sci 60:2053–2063. https://doi.org/10.1007/s00018-003-3038-3
PubMed
CAS
Article
Google Scholar
McFadden DG, Barbosa AC, Richardson JA, Schneider MD, Srivastava D, Olson EN (2005) The Hand1 and Hand2 transcription factors regulate expansion of the embryonic cardiac ventricles in a gene dosage-dependent manner. Development 132:189–201. https://doi.org/10.1242/dev.01562
PubMed
CAS
Article
Google Scholar
McKeon FD, Kirschner MW, Caput D (1986) Homologies in both primary and secondary structure between nuclear envelope and intermediate filament proteins. Nature 319:463–468. https://doi.org/10.1038/319463a0
PubMed
CAS
Article
Google Scholar
McNally EM, Mestroni L (2017) Dilated cardiomyopathy: genetic determinants and mechanisms. Circ Res 121:731–748. https://doi.org/10.1161/CIRCRESAHA.116.309396
PubMed
CAS
Article
PubMed Central
Google Scholar
Meinke P, Schirmer EC (2016) The increasing relevance of nuclear envelope myopathies. Curr Opin Neurol 29:651–661. https://doi.org/10.1097/WCO.0000000000000359
PubMed
CAS
Article
Google Scholar
Meinke P et al (2014) Muscular dystrophy-associated SUN1 and SUN2 variants disrupt nuclear-cytoskeletal connections and myonuclear organization. PLoS Genet 10:e1004605. https://doi.org/10.1371/journal.pgen.1004605
PubMed
PubMed Central
CAS
Article
Google Scholar
Mejat A, Misteli T (2010) LINC complexes in health and disease. Nucleus 1:40–52. https://doi.org/10.4161/nucl.1.1.10530
PubMed
PubMed Central
Article
Google Scholar
Melcon G et al (2006) Loss of emerin at the nuclear envelope disrupts the Rb1/E2F and MyoD pathways during muscle regeneration. Hum Mol Genet 15:637–651. https://doi.org/10.1093/hmg/ddi479
PubMed
CAS
Article
Google Scholar
Mendez-Lopez I, Worman HJ (2012) Inner nuclear membrane proteins: impact on human disease. Chromosoma 121:153–167. https://doi.org/10.1007/s00412-012-0360-2
PubMed
CAS
Article
Google Scholar
Merner ND et al (2008) Arrhythmogenic right ventricular cardiomyopathy type 5 is a fully penetrant, lethal arrhythmic disorder caused by a missense mutation in the TMEM43 gene. Am J Hum Genet 82:809–821. https://doi.org/10.1016/j.ajhg.2008.01.010
PubMed
PubMed Central
CAS
Article
Google Scholar
Mewborn SK et al (2010) Altered chromosomal positioning, compaction, and gene expression with a lamin A/C gene mutation. PLoS One 5:e14342. https://doi.org/10.1371/journal.pone.0014342
PubMed
PubMed Central
CAS
Article
Google Scholar
Milting H et al (2015) The TMEM43 Newfoundland mutation p.S358L causing ARVC-5 was imported from Europe and increases the stiffness of the cell nucleus. Eur Heart J 36:872–881. https://doi.org/10.1093/eurheartj/ehu077
PubMed
CAS
Article
Google Scholar
Mislow JM, Holaska JM, Kim MS, Lee KK, Segura-Totten M, Wilson KL, McNally EM (2002a) Nesprin-1alpha self-associates and binds directly to emerin and lamin A in vitro. FEBS Lett 525:135–140
PubMed
CAS
Article
Google Scholar
Mislow JM, Kim MS, Davis DB, McNally EM (2002b) Myne-1, a spectrin repeat transmembrane protein of the myocyte inner nuclear membrane, interacts with lamin A/C. J Cell Sci 115:61–70
PubMed
CAS
Google Scholar
Montes de Oca R, Lee KK, Wilson KL (2005) Binding of barrier to autointegration factor (BAF) to histone H3 and selected linker histones including H1.1. J Biol Chem 280:42252–42262. https://doi.org/10.1074/jbc.M509917200
PubMed
CAS
Article
Google Scholar
Montes de Oca R, Shoemaker CJ, Gucek M, Cole RN, Wilson KL (2009) Barrier-to-autointegration factor proteome reveals chromatin-regulatory partners. PLoS One 4:e7050. https://doi.org/10.1371/journal.pone.0007050
PubMed
PubMed Central
CAS
Article
Google Scholar
Montes de Oca R, Andreassen PR, Wilson KL (2011) Barrier-to-autointegration factor influences specific histone modifications. Nucleus 2:580–590. https://doi.org/10.4161/nucl.2.6.17960
PubMed
PubMed Central
Article
Google Scholar
Morgan JT et al (2011) Nesprin-3 regulates endothelial cell morphology, perinuclear cytoskeletal architecture, and flow-induced polarization. Mol Biol Cell 22:4324–4334. https://doi.org/10.1091/mbc.E11-04-0287
PubMed
PubMed Central
CAS
Article
Google Scholar
Mounkes LC, Kozlov SV, Rottman JN, Stewart CL (2005) Expression of an LMNA-N195K variant of A-type lamins results in cardiac conduction defects and death in mice. Hum Mol Genet 14:2167–2180. https://doi.org/10.1093/hmg/ddi221
PubMed
CAS
Article
Google Scholar
Muchir A et al (2000) Identification of mutations in the gene encoding lamins A/C in autosomal dominant limb girdle muscular dystrophy with atrioventricular conduction disturbances (LGMD1B). Hum Mol Genet 9:1453–1459
PubMed
CAS
Article
Google Scholar
Muchir A, Pavlidis P, Bonne G, Hayashi YK, Worman HJ (2007a) Activation of MAPK in hearts of EMD null mice: similarities between mouse models of X-linked and autosomal dominant Emery Dreifuss muscular dystrophy. Hum Mol Genet 16:1884–1895. https://doi.org/10.1093/hmg/ddm137
PubMed
CAS
Article
Google Scholar
Muchir A, Pavlidis P, Decostre V, Herron AJ, Arimura T, Bonne G, Worman HJ (2007b) Activation of MAPK pathways links LMNA mutations to cardiomyopathy in Emery-Dreifuss muscular dystrophy. J Clin Invest 117:1282–1293. https://doi.org/10.1172/JCI29042
PubMed
PubMed Central
CAS
Article
Google Scholar
Muchir A, Shan J, Bonne G, Lehnart SE, Worman HJ (2009) Inhibition of extracellular signal-regulated kinase signaling to prevent cardiomyopathy caused by mutation in the gene encoding A-type lamins. Hum Mol Genet 18:241–247. https://doi.org/10.1093/hmg/ddn343
PubMed
CAS
Article
Google Scholar
Muchir A, Wu W, Choi JC, Iwata S, Morrow J, Homma S, Worman HJ (2012) Abnormal p38alpha mitogen-activated protein kinase signaling in dilated cardiomyopathy caused by lamin A/C gene mutation. Hum Mol Genet 21:4325–4333. https://doi.org/10.1093/hmg/dds265
PubMed
PubMed Central
CAS
Article
Google Scholar
Naetar N et al (2008) Loss of nucleoplasmic LAP2alpha-lamin A complexes causes erythroid and epidermal progenitor hyperproliferation. Nat Cell Biol 10:1341–1348. https://doi.org/10.1038/ncb1793
PubMed
CAS
Article
Google Scholar
Nagano A et al (1996) Emerin deficiency at the nuclear membrane in patients with Emery-Dreifuss muscular dystrophy. Nat Genet 12:254–259. https://doi.org/10.1038/ng0396-254
PubMed
CAS
Article
Google Scholar
Nigro V et al (1995) SSCP detection of novel mutations in patients with Emery-Dreifuss muscular dystrophy: definition of a small C-terminal region required for emerin function. Hum Mol Genet 4:2003–2004
PubMed
CAS
Article
Google Scholar
Nikolova V et al (2004) Defects in nuclear structure and function promote dilated cardiomyopathy in lamin A/C-deficient mice. J Clin Invest 113:357–369. https://doi.org/10.1172/JCI19448
PubMed
PubMed Central
CAS
Article
Google Scholar
Nikolova-Krstevski V et al (2011) Nesprin-1 and actin contribute to nuclear and cytoskeletal defects in lamin A/C-deficient cardiomyopathy. J Mol Cell Cardiol 50:479–486. https://doi.org/10.1016/j.yjmcc.2010.12.001
PubMed
CAS
Article
Google Scholar
Nishioka Y, Imaizumi H, Imada J, Katahira J, Matsuura N, Hieda M (2016) SUN1 splice variants, SUN1_888, SUN1_785, and predominant SUN1_916, variably function in directional cell migration. Nucleus 7:572–584. https://doi.org/10.1080/19491034.2016.1260802
PubMed
PubMed Central
CAS
Article
Google Scholar
Osada S, Ohmori SY, Taira M (2003) XMAN1, an inner nuclear membrane protein, antagonizes BMP signaling by interacting with Smad1 in Xenopus embryos. Development 130:1783–1794
PubMed
CAS
Article
Google Scholar
Ozawa R et al (2006) Emerin-lacking mice show minimal motor and cardiac dysfunctions with nuclear-associated vacuoles. Am J Pathol 168:907–917. https://doi.org/10.2353/ajpath.2006.050564
PubMed
PubMed Central
CAS
Article
Google Scholar
Padiath QS et al (2006) Lamin B1 duplications cause autosomal dominant leukodystrophy. Nat Genet 38:1114–1123. https://doi.org/10.1038/ng1872
PubMed
CAS
Article
Google Scholar
Padmakumar VC, Abraham S, Braune S, Noegel AA, Tunggal B, Karakesisoglou I, Korenbaum E (2004) Enaptin, a giant actin-binding protein, is an element of the nuclear membrane and the actin cytoskeleton. Exp Cell Res 295:330–339. https://doi.org/10.1016/j.yexcr.2004.01.014
PubMed
CAS
Article
Google Scholar
Padmakumar VC et al (2005) The inner nuclear membrane protein Sun1 mediates the anchorage of Nesprin-2 to the nuclear envelope. J Cell Sci 118:3419–3430. https://doi.org/10.1242/jcs.02471
PubMed
CAS
Article
Google Scholar
Pan D, Estevez-Salmeron LD, Stroschein SL, Zhu X, He J, Zhou S, Luo K (2005) The integral inner nuclear membrane protein MAN1 physically interacts with the R-Smad proteins to repress signaling by the transforming growth factor-{beta} superfamily of cytokines. J Biol Chem 280:15992–16001. https://doi.org/10.1074/jbc.M411234200
PubMed
CAS
Article
Google Scholar
Perovanovic J et al (2016) Laminopathies disrupt epigenomic developmental programs and cell fate. Sci Transl Med 8:335ra358. https://doi.org/10.1126/scitranslmed.aad4991
CAS
Article
Google Scholar
Petrie RJ, Koo H, Yamada KM (2014) Generation of compartmentalized pressure by a nuclear piston governs cell motility in a 3D matrix. Science 345:1062–1065. https://doi.org/10.1126/science.1256965
PubMed
PubMed Central
CAS
Article
Google Scholar
Pickersgill H, Kalverda B, de Wit E, Talhout W, Fornerod M, van Steensel B (2006) Characterization of the Drosophila melanogaster genome at the nuclear lamina. Nat Genet 38:1005–1014. https://doi.org/10.1038/ng1852
PubMed
CAS
Article
Google Scholar
Postel R, Ketema M, Kuikman I, de Pereda JM, Sonnenberg A (2011) Nesprin-3 augments peripheral nuclear localization of intermediate filaments in zebrafish. J Cell Sci 124:755–764. https://doi.org/10.1242/jcs.081174
PubMed
CAS
Article
Google Scholar
Potter C et al (2017) Multiple isoforms of Nesprin1 are integral components of ciliary rootlets. Curr Biol 27:2014–2022 e6. https://doi.org/10.1016/j.cub.2017.05.066
PubMed
PubMed Central
CAS
Article
Google Scholar
Prokocimer M et al (2009) Nuclear lamins: key regulators of nuclear structure and activities. J Cell Mol Med 13:1059–1085. https://doi.org/10.1111/j.1582-4934.2008.00676.x
PubMed
PubMed Central
CAS
Article
Google Scholar
Puckelwartz MJ et al (2009) Disruption of nesprin-1 produces an Emery Dreifuss muscular dystrophy-like phenotype in mice. Hum Mol Genet 18:607–620. https://doi.org/10.1093/hmg/ddn386
PubMed
CAS
Article
Google Scholar
Puckelwartz MJ et al (2010) Nesprin-1 mutations in human and murine cardiomyopathy. J Mol Cell Cardiol 48:600–608. https://doi.org/10.1016/j.yjmcc.2009.11.006
PubMed
CAS
Article
Google Scholar
Quijano-Roy S et al (2008) De novo LMNA mutations cause a new form of congenital muscular dystrophy. Ann Neurol 64:177–186. https://doi.org/10.1002/ana.21417
PubMed
Article
Google Scholar
Raffaele Di Barletta M et al (2000) Different mutations in the LMNA gene cause autosomal dominant and autosomal recessive Emery-Dreifuss muscular dystrophy. Am J Hum Genet 66:1407–1412. https://doi.org/10.1086/302869
PubMed
PubMed Central
CAS
Article
Google Scholar
Rajgor D, Mellad JA, Autore F, Zhang Q, Shanahan CM (2012) Multiple novel nesprin-1 and nesprin-2 variants act as versatile tissue-specific intracellular scaffolds. PLoS One 7:e40098. https://doi.org/10.1371/journal.pone.0040098
PubMed
PubMed Central
CAS
Article
Google Scholar
Rajkumar R, Sembrat JC, McDonough B, Seidman CE, Ahmad F (2012) Functional effects of the TMEM43 Ser358Leu mutation in the pathogenesis of arrhythmogenic right ventricular cardiomyopathy. BMC Med Genet 13:21. https://doi.org/10.1186/1471-2350-13-21
PubMed
PubMed Central
CAS
Article
Google Scholar
Raju GP, Dimova N, Klein PS, Huang HC (2003) SANE, a novel LEM domain protein, regulates bone morphogenetic protein signaling through interaction with Smad1. J Biol Chem 278:428–437. https://doi.org/10.1074/jbc.M210505200
PubMed
CAS
Article
Google Scholar
Randles KN et al (2010) Nesprins, but not sun proteins, switch isoforms at the nuclear envelope during muscle development. Dev Dyn 239:998–1009. https://doi.org/10.1002/dvdy.22229
PubMed
PubMed Central
CAS
Article
Google Scholar
Razafsky D, Hodzic D (2015) A variant of Nesprin1 giant devoid of KASH domain underlies the molecular etiology of autosomal recessive cerebellar ataxia type I. Neurobiol Dis 78:57–67. https://doi.org/10.1016/j.nbd.2015.03.027
PubMed
PubMed Central
CAS
Article
Google Scholar
Rebelo S, da Cruz ESEF, da Cruz ESOA (2015) Genetic mutations strengthen functional association of LAP1 with DYT1 dystonia and muscular dystrophy. Mutat Res Rev Mutat Res 766:42–47. https://doi.org/10.1016/j.mrrev.2015.07.004
PubMed
CAS
Article
Google Scholar
Reil M, Dabauvalle MC (2013) Essential roles of LEM-domain protein MAN1 during organogenesis in Xenopus laevis and overlapping functions of emerin. Eur J Cell Biol 92:280–294. https://doi.org/10.1016/j.ejcb.2013.10.008
PubMed
CAS
Article
Google Scholar
Renou L et al (2008) Heart-hand syndrome of Slovenian type: a new kind of laminopathy. J Med Genet 45:666–671. https://doi.org/10.1136/jmg.2008.060020
PubMed
CAS
Article
Google Scholar
Rhee HW, Zou P, Udeshi ND, Martell JD, Mootha VK, Carr SA, Ting AY (2013) Proteomic mapping of mitochondria in living cells via spatially restricted enzymatic tagging. Science 339:1328–1331. https://doi.org/10.1126/science.1230593
PubMed
PubMed Central
CAS
Article
Google Scholar
Rober RA, Weber K, Osborn M (1989) Differential timing of nuclear lamin A/C expression in the various organs of the mouse embryo and the young animal: a developmental study. Development 105:365–378
PubMed
CAS
Google Scholar
Robson MI et al (2016) Tissue-specific gene repositioning by muscle nuclear membrane proteins enhances repression of critical developmental genes during myogenesis. Mol Cell 62:834–847. https://doi.org/10.1016/j.molcel.2016.04.035
PubMed
PubMed Central
CAS
Article
Google Scholar
Rockman HA et al (1991) Segregation of atrial-specific and inducible expression of an atrial natriuretic factor transgene in an in vivo murine model of cardiac hypertrophy. Proc Natl Acad Sci U S A 88:8277–8281
PubMed
PubMed Central
CAS
Article
Google Scholar
Ronaldson-Bouchard K et al (2018) Advanced maturation of human cardiac tissue grown from pluripotent stem cells. Nature 556:239–243. https://doi.org/10.1038/s41586-018-0016-3
PubMed
CAS
Article
PubMed Central
Google Scholar
Rothballer A, Schwartz TU, Kutay U (2013) LINCing complex functions at the nuclear envelope: what the molecular architecture of the LINC complex can reveal about its function. Nucleus 4:29–36. https://doi.org/10.4161/nucl.23387
PubMed
PubMed Central
Article
Google Scholar
Roux KJ, Kim DI, Raida M, Burke B (2012) A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells. J Cell Biol 196:801–810. https://doi.org/10.1083/jcb.201112098
PubMed
PubMed Central
CAS
Article
Google Scholar
Rowat AC, Lammerding J, Ipsen JH (2006) Mechanical properties of the cell nucleus and the effect of emerin deficiency. Biophys J 91:4649–4664. https://doi.org/10.1529/biophysj.106.086454
PubMed
PubMed Central
CAS
Article
Google Scholar
Santos M et al (2014) Identification of a novel human LAP1 isoform that is regulated by protein phosphorylation. PLoS One 9:e113732. https://doi.org/10.1371/journal.pone.0113732
PubMed
PubMed Central
CAS
Article
Google Scholar
Schirmer EC, Florens L, Guan T, Yates JR 3rd, Gerace L (2003) Nuclear membrane proteins with potential disease links found by subtractive proteomics. Science 301:1380–1382. https://doi.org/10.1126/science.1088176
PubMed
CAS
Article
Google Scholar
Senior A, Gerace L (1988) Integral membrane proteins specific to the inner nuclear membrane and associated with the nuclear lamina. J Cell Biol 107:2029–2036
PubMed
CAS
Article
Google Scholar
Shackleton S et al (2000) LMNA, encoding lamin A/C, is mutated in partial lipodystrophy. Nat Genet 24:153–156. https://doi.org/10.1038/72807
PubMed
CAS
Article
Google Scholar
Shanahan CM, Weissberg PL, Metcalfe JC (1993) Isolation of gene markers of differentiated and proliferating vascular smooth muscle cells. Circ Res 73:193–204
PubMed
CAS
Article
Google Scholar
Shimojima M et al (2017) Emerin plays a crucial role in nuclear invagination and in the nuclear calcium transient. Sci Rep 7:44312. https://doi.org/10.1038/srep44312
PubMed
PubMed Central
CAS
Article
Google Scholar
Shin JY et al (2013) Lamina-associated polypeptide-1 interacts with the muscular dystrophy protein emerin and is essential for skeletal muscle maintenance. Dev Cell 26:591–603. https://doi.org/10.1016/j.devcel.2013.08.012
PubMed
PubMed Central
CAS
Article
Google Scholar
Shin JY et al (2014) Depletion of lamina-associated polypeptide 1 from cardiomyocytes causes cardiac dysfunction in mice. Nucleus 5:260–459. https://doi.org/10.4161/nucl.29227
PubMed
PubMed Central
Article
Google Scholar
Siragam V et al (2014) TMEM43 mutation p.S358L alters intercalated disc protein expression and reduces conduction velocity in arrhythmogenic right ventricular cardiomyopathy. PLoS One 9:e109128. https://doi.org/10.1371/journal.pone.0109128
PubMed
PubMed Central
CAS
Article
Google Scholar
Siu CW et al (2012) Modeling of lamin A/C mutation premature cardiac aging using patient-specific induced pluripotent stem cells. Aging (Albany NY) 4:803–822. https://doi.org/10.18632/aging.100503
CAS
Article
Google Scholar
Solovei I et al (2013) LBR and lamin A/C sequentially tether peripheral heterochromatin and inversely regulate differentiation. Cell 152:584–598. https://doi.org/10.1016/j.cell.2013.01.009
PubMed
CAS
Article
Google Scholar
Sosa BA, Rothballer A, Kutay U, Schwartz TU (2012) LINC complexes form by binding of three KASH peptides to domain interfaces of trimeric SUN proteins. Cell 149:1035–1047. https://doi.org/10.1016/j.cell.2012.03.046
PubMed
PubMed Central
CAS
Article
Google Scholar
Sosa BA, Kutay U, Schwartz TU (2013) Structural insights into LINC complexes. Curr Opin Struct Biol 23:285–291. https://doi.org/10.1016/j.sbi.2013.03.005
PubMed
PubMed Central
CAS
Article
Google Scholar
Starr DA, Fridolfsson HN (2010) Interactions between nuclei and the cytoskeleton are mediated by SUN-KASH nuclear-envelope bridges. Annu Rev Cell Dev Biol 26:421–444. https://doi.org/10.1146/annurev-cellbio-100109-104037
PubMed
PubMed Central
CAS
Article
Google Scholar
Starr DA, Han M (2002) Role of ANC-1 in tethering nuclei to the actin cytoskeleton. Science 298:406–409. https://doi.org/10.1126/science.1075119
PubMed
CAS
Article
Google Scholar
Stroud MJ, Banerjee I, Veevers J, Chen J (2014) Linker of nucleoskeleton and cytoskeleton complex proteins in cardiac structure, function, and disease. Circ Res 114:538–548. https://doi.org/10.1161/CIRCRESAHA.114.301236
PubMed
PubMed Central
CAS
Article
Google Scholar
Stroud MJ, Feng W, Zhang J, Veevers J, Fang X, Gerace L, Chen J (2017) Nesprin 1alpha2 is essential for mouse postnatal viability and nuclear positioning in skeletal muscle. J Cell Biol 216:1915–1924. https://doi.org/10.1083/jcb.201612128
PubMed
PubMed Central
CAS
Article
Google Scholar
Stroud MJ et al (2018) Luma is not essential for murine cardiac development and function. Cardiovasc Res 114:378–388. https://doi.org/10.1093/cvr/cvx205
PubMed
Article
Google Scholar
Stubenvoll A, Rice M, Wietelmann A, Wheeler M, Braun T (2015) Attenuation of Wnt/beta-catenin activity reverses enhanced generation of cardiomyocytes and cardiac defects caused by the loss of emerin. Hum Mol Genet 24:802–813. https://doi.org/10.1093/hmg/ddu498
PubMed
CAS
Article
Google Scholar
Stuurman N, Heins S, Aebi U (1998) Nuclear lamins: their structure, assembly, and interactions. J Struct Biol 122:42–66. https://doi.org/10.1006/jsbi.1998.3987
PubMed
CAS
Article
Google Scholar
Sullivan T et al (1999) Loss of A-type Lamin expression compromises nuclear envelope integrity leading to muscular dystrophy. J Cell Biol 147:913–920
PubMed
PubMed Central
CAS
Article
Google Scholar
Swift J et al (2013) Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. Science 341:1240104. https://doi.org/10.1126/science.1240104
PubMed
PubMed Central
CAS
Article
Google Scholar
Tapia O, Fong LG, Huber MD, Young SG, Gerace L (2015) Nuclear envelope protein Lem2 is required for mouse development and regulates MAP and AKT kinases. PLoS One 10:e0116196. https://doi.org/10.1371/journal.pone.0116196
PubMed
PubMed Central
CAS
Article
Google Scholar
Taylor MR et al (2005) Thymopoietin (lamina-associated polypeptide 2) gene mutation associated with dilated cardiomyopathy. Hum Mutat 26:566–574. https://doi.org/10.1002/humu.20250
PubMed
CAS
Article
Google Scholar
Towbin BD et al (2012) Step-wise methylation of histone H3K9 positions heterochromatin at the nuclear periphery. Cell 150:934–947. https://doi.org/10.1016/j.cell.2012.06.051
PubMed
CAS
Article
Google Scholar
van Steensel B, Belmont AS (2017) Lamina-associated domains: links with chromosome architecture, heterochromatin, and gene repression. Cell 169:780–791. https://doi.org/10.1016/j.cell.2017.04.022
PubMed
PubMed Central
CAS
Article
Google Scholar
Vergnes L, Peterfy M, Bergo MO, Young SG, Reue K (2004) Lamin B1 is required for mouse development and nuclear integrity. Proc Natl Acad Sci U S A 101:10428–10433. https://doi.org/10.1073/pnas.0401424101
PubMed
PubMed Central
CAS
Article
Google Scholar
Vohanka S et al (2001) A mutation in the X-linked Emery-Dreifuss muscular dystrophy gene in a patient affected with conduction cardiomyopathy. Neuromuscul Disord 11:411–413
PubMed
CAS
Article
Google Scholar
Voit T et al (1988) Emery-Dreifuss muscular dystrophy: disease spectrum and differential diagnosis. Neuropediatrics 19:62–71. https://doi.org/10.1055/s-2008-1052404
PubMed
CAS
Article
Google Scholar
Vytopil M et al (2003) Mutation analysis of the lamin A/C gene (LMNA) among patients with different cardiomuscular phenotypes. J Med Genet 40:e132
PubMed
PubMed Central
CAS
Article
Google Scholar
Wagner N, Krohne G (2007) LEM-domain proteins: new insights into lamin-interacting proteins. Int Rev Cytol 261:1–46. https://doi.org/10.1016/S0074-7696(07)61001-8
PubMed
CAS
Article
Google Scholar
Wang Y, Herron AJ, Worman HJ (2006) Pathology and nuclear abnormalities in hearts of transgenic mice expressing M371K lamin A encoded by an LMNA mutation causing Emery-Dreifuss muscular dystrophy. Hum Mol Genet 15:2479–2489. https://doi.org/10.1093/hmg/ddl170
PubMed
CAS
Article
Google Scholar
Wang W et al (2012) Structural insights into SUN-KASH complexes across the nuclear envelope. Cell Res 22:1440–1452. https://doi.org/10.1038/cr.2012.126
PubMed
PubMed Central
CAS
Article
Google Scholar
Warren DT, Zhang Q, Weissberg PL, Shanahan CM (2005) Nesprins: intracellular scaffolds that maintain cell architecture and coordinate cell function? Expert Rev Mol Med 7:1–15. https://doi.org/10.1017/S1462399405009294
PubMed
Article
Google Scholar
Wilhelmsen K et al (2005) Nesprin-3, a novel outer nuclear membrane protein, associates with the cytoskeletal linker protein plectin. J Cell Biol 171:799–810. https://doi.org/10.1083/jcb.200506083
PubMed
PubMed Central
CAS
Article
Google Scholar
Wilson KL, Foisner R (2010) Lamin-binding Proteins. Cold Spring Harb Perspect Biol 2:a000554. https://doi.org/10.1101/cshperspect.a000554
PubMed
PubMed Central
CAS
Article
Google Scholar
Worman HJ (2012) Nuclear lamins and laminopathies. J Pathol 226:316–325. https://doi.org/10.1002/path.2999
PubMed
CAS
Article
Google Scholar
Worman HJ, Courvalin JC (2000) The inner nuclear membrane. J Membr Biol 177:1–11
PubMed
CAS
Article
Google Scholar
Worman HJ, Fong LG, Muchir A, Young SG (2009) Laminopathies and the long strange trip from basic cell biology to therapy. J Clin Invest 119:1825–1836. https://doi.org/10.1172/JCI37679
PubMed
PubMed Central
CAS
Article
Google Scholar
Worman HJ, Ostlund C, Wang Y (2010) Diseases of the nuclear envelope. Cold Spring Harb Perspect Biol 2:a000760. https://doi.org/10.1101/cshperspect.a000760
PubMed
PubMed Central
CAS
Article
Google Scholar
Wu W, Shan J, Bonne G, Worman HJ, Muchir A (2010) Pharmacological inhibition of c-Jun N-terminal kinase signaling prevents cardiomyopathy caused by mutation in LMNA gene. Biochim Biophys Acta 1802:632–638. https://doi.org/10.1016/j.bbadis.2010.04.001
PubMed
PubMed Central
CAS
Article
Google Scholar
Wu W, Muchir A, Shan J, Bonne G, Worman HJ (2011) Mitogen-activated protein kinase inhibitors improve heart function and prevent fibrosis in cardiomyopathy caused by mutation in lamin A/C gene. Circulation 123:53–61. https://doi.org/10.1161/CIRCULATIONAHA.110.970673
PubMed
CAS
Article
Google Scholar
Xing XW, Li LY, Liu G, Fu JJ, Tan XJ, Lu GX (2004) Identification of a novel gene SRG4 expressed at specific stages of mouse spermatogenesis. Acta Biochim Biophys Sin Shanghai 36:351–359
PubMed
CAS
Article
Google Scholar
Yamada T, Kobayashi T (1996) A novel emerin mutation in a Japanese patient with Emery-Dreifuss muscular dystrophy. Hum Genet 97:693–694
PubMed
CAS
Article
Google Scholar
Zhang Q et al (2001) Nesprins: a novel family of spectrin-repeat-containing proteins that localize to the nuclear membrane in multiple tissues. J Cell Sci 114:4485–4498
PubMed
CAS
Google Scholar
Zhang Q, Ragnauth C, Greener MJ, Shanahan CM, Roberts RG (2002) The nesprins are giant actin-binding proteins, orthologous to Drosophila melanogaster muscle protein MSP-300. Genomics 80:473–481
PubMed
CAS
Article
Google Scholar
Zhang Q et al (2005) Nesprin-2 is a multi-isomeric protein that binds lamin and emerin at the nuclear envelope and forms a subcellular network in skeletal muscle. J Cell Sci 118:673–687. https://doi.org/10.1242/jcs.01642
PubMed
CAS
Article
Google Scholar
Zhang Q et al (2007a) Nesprin-1 and -2 are involved in the pathogenesis of Emery Dreifuss muscular dystrophy and are critical for nuclear envelope integrity. Hum Mol Genet 16:2816–2833. https://doi.org/10.1093/hmg/ddm238
PubMed
CAS
Article
Google Scholar
Zhang X et al (2007b) Syne-1 and Syne-2 play crucial roles in myonuclear anchorage and motor neuron innervation. Development 134:901–908. https://doi.org/10.1242/dev.02783
PubMed
CAS
Article
Google Scholar
Zhang J et al (2010) Nesprin 1 is critical for nuclear positioning and anchorage. Hum Mol Genet 19:329–341. https://doi.org/10.1093/hmg/ddp499
PubMed
CAS
Article
Google Scholar
Zhang Z et al (2015) Normalization of Naxos plakoglobin levels restores cardiac function in mice. J Clin Invest 125:1708–1712. https://doi.org/10.1172/JCI80335
PubMed
PubMed Central
Article
Google Scholar
Zhen YY, Libotte T, Munck M, Noegel AA, Korenbaum E (2002) NUANCE, a giant protein connecting the nucleus and actin cytoskeleton. J Cell Sci 115:3207–3222
PubMed
CAS
Google Scholar
Zhou Z et al (2012) Structure of Sad1-UNC84 homology (SUN) domain defines features of molecular bridge in nuclear envelope. J Biol Chem 287:5317–5326. https://doi.org/10.1074/jbc.M111.304543
PubMed
CAS
Article
Google Scholar
Zhou C et al (2017) Novel nesprin-1 mutations associated with dilated cardiomyopathy cause nuclear envelope disruption and defects in myogenesis. Hum Mol Genet 26:2258–2276. https://doi.org/10.1093/hmg/ddx116
PubMed
PubMed Central
CAS
Article
Google Scholar
Zimmermann WH et al (2006) Engineered heart tissue grafts improve systolic and diastolic function in infarcted rat hearts. Nat Med 12:452–458. https://doi.org/10.1038/nm1394
PubMed
CAS
Article
Google Scholar