Skip to main content

Advertisement

Log in

Fibril formation from the amyloid-β peptide is governed by a dynamic equilibrium involving association and dissociation of the monomer

  • Review
  • Published:
Biophysical Reviews Aims and scope Submit manuscript

Abstract

Here I review the molecular mechanisms by which water-soluble monomeric amyloid-β (Aβ) peptides are transformed into well-organized supramolecular complexes called amyloid fibrils. The mechanism of amyloid formation is considered theoretically on the basis of experimental results, and the structural and mechanistic similarities of amyloid fibrils to three-dimensional crystals are highlighted. A number of important results from the literature are described. These include the observation that a correct ratio of monomer association and dissociation rate constants is key for formation of well-organized amyloid fibrils. The dynamic nature of the amyloid-β structure is discussed, along with the possibly obligate requirement of the transient formation of a hairpin-like fold prior to its incorporation into amyloid fibrils. Many rounds of monomer association and dissociation events may be present during an apparently silent lag-period. Amongst these association/dissociation events, interaction between the C-terminal regions of the Aβ peptide seems to be more favored. Such association and dissociation events occurring in a “trial-and-error” fashion may be an important requirement for the formation of well-organized amyloid fibrils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahn HC, Le YT, Nagchowdhuri PS, Derose EF, Putnam-Evans C, London RE, Markley JL, Lim KH (2006) NMR characterizations of an amyloidogenic conformational ensemble of the PI3K SH3 domain. Protein Sci 15:2552–2557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Antzutkin ON, Balbach JJ, Leapman RD, Rizzo NW, Reed J, Tycko R (2000) Multiple quantum solid-state NMR indicates a parallel, not antiparallel, organization of β-sheets in Alzheimer’s β-amyloid fibrils. Proc Natl Acad Sci U S A 97:13045–13050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balbach JJ, Petkova AT, Oyler NA, Antzutkin ON, Gordon DJ, Meredith SC, Tycko R (2002) Supramolecular structure in full-length Alzheimer’s β-amyloid fibrils: evidence for a parallel β-sheet organization from solid-state nuclear magnetic resonance. Biophys J 83:1205–1216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benzinger TL, Gregory DM, Burkoth TS, Miller-Auer H, Lynn DG, Botto RE, Meredith SC (1998) Propagating structure of Alzheimer’s β-amyloid(10–35) is parallel β-sheet with residues in exact register. Proc Natl Acad Sci U S A 95:13407–13412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bertoncini CW, Jung YS, Fernandez CO, Hoyer W, Griesinger C, Jovin TM, Zweckstetter M (2005) Release of long-range tertiary interactions potentiates aggregation of natively unstructured α-synuclein. Proc Natl Acad Sci U S A 102:1430–1435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carulla M, Caddy GL, Hall DR, Zurdo J, Gairí M, Feliz M, Giralt E, Robinson CV, Dobson CM (2005) Molecular recycling within amyloid fibrils. Nature 436:554–558

    Article  CAS  PubMed  Google Scholar 

  • Cavanagh J, Fairbrother WJ, Palmer AG III, Rance M, Skelton NJ (2007) Protein NMR spectroscopy, 2nd edn. Academic, Oxford, pp 333–404

    Book  Google Scholar 

  • Dobson CM (1999) Protein misfolding, evolution and disease. Trends Biochem Sci 24:329–332

    Article  CAS  PubMed  Google Scholar 

  • Donon CM (2001) The structural basis of protein folding and its links with human disease. Philos Trans R Soc Lond B 356(1406):133–145

    Article  Google Scholar 

  • Esler WP, Stimson ER, Jennings JM, Vinters HV, Ghilardi JR, Lee JP, Mantyh PW, Maggio JE (2000) Alzheimer’s disease amyloid propagation by a template-dependent dock–lock mechanism. Biochemistry 39:6288–6295

    Article  CAS  PubMed  Google Scholar 

  • Hall D, Hirota N (2009) Multi-scale modelling of amyloid formation from unfolded proteins using a set of theory derived rate constants. Biophys Chem 140:122–128

    Article  CAS  PubMed  Google Scholar 

  • Hasegawa K, Yamaguchi I, Omata S, Gejyo F, Naiki H (1999) Interaction between Aβ(1–42) and Aβ(1–40) in Alzheimer’s β-amyloid fibril formation in vitro. Biochemistry 38:15514–15521

    Article  CAS  PubMed  Google Scholar 

  • Hong DP, Gozu M, Hasegawa K, Naiki H, Goto Y (2002) Conformation of β2-microglobulin amyloid fibrils analyzed by reduction of the disulfide bond. J Biol Chem 277:21554–21560

    Article  CAS  PubMed  Google Scholar 

  • Inouye H, Fraser PE, Kirschner DA (1993) Structure of β-crystallite assemblies formed by Alzheimer β-amyloid protein analogues: analysis by x-ray diffraction. Biophys J 64:502–519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ivanova MI, Sievers SA, Sawaya MR, Wall JS, Eisenberg D (2009) Molecular basis for insulin fibril assembly. Proc Natl Acad Sci U S A 106:18990–18995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iwahara J, Clore GM (2006) Detecting transient intermediates in macromolecular binding by paramagnetic NMR. Nature 440:1227–1230

    Article  CAS  PubMed  Google Scholar 

  • Jarrett JT, Lansbury PT Jr (1992) Amyloid fibril formation requires a chemically discriminating nucleation event: Studies of an amyloidogenic sequence from the bacterial protein OsmB. Biochemistry 31:12345–12352

    Article  CAS  PubMed  Google Scholar 

  • Jarrett JT, Lansbury PT Jr (1993) Seeding “one-dimensional crystallization” of amyloid: a pathogenic mechanism in Alzheimer’s disease and scrapie? Cell 73:1055–1058

    Article  CAS  PubMed  Google Scholar 

  • Jiménez JL, Guijarro JI, Orlova E, Zurdo J, Dobson CM, Sunde M, Saibil HR (1999) Cryo-electron microscopy structure of an SH3 amyloid fibril and model of the molecuar packing. EMBO J 18:815–821

    Article  PubMed  PubMed Central  Google Scholar 

  • Knowles TP, Waudby CA, Devlin GL, Cohen SI, Aguzzi A, Vendruscolo M, Terentjev EM, Welland ME, Dobson CM (2009) An analytical solution to the kinetics of breakable filament assembly. Science 326:1533–1537

    Article  CAS  PubMed  Google Scholar 

  • Luft JR, DeTitta GT (1997) Kinetic aspects of macromolecular crystallization. Methods Enzymol 276:110–131

    Article  CAS  Google Scholar 

  • Lührs T, Ritter C, Adrian M, Riek-Loher D, Bohrmann B, Döbeli H, Schubert D, Riek R (2005) 3D structure of Alzheimer’s amyloid-β(1–42) fibrils. Proc Natl Acad Sci U S A 102:17342–17347

    Article  PubMed  PubMed Central  Google Scholar 

  • Morris AM, Murielle A, Finke RG (2009) Protein aggregation kinetics, mechanism, and curve-fitting: a review of the literature. Biochim Biophys Acta 1974:375–397

    Article  Google Scholar 

  • Naiki H, Gejyo F (1999) Kinetic analysis of amyloid fibril formation. Methods Enzymol 309:305–318

    Article  CAS  PubMed  Google Scholar 

  • Naiki H, Nakakuki K (1996) First-order kinetic model of Alzheimer’s β-amyloid fibril extension in vitro. Lab Investig 74:374–383

    CAS  PubMed  Google Scholar 

  • Nelson R, Eisenberg D (2006) Structural models of amyloid-like fibrils. Adv Protein Chem 73:235–282

    Article  CAS  PubMed  Google Scholar 

  • Nelson R, Sawaya MR, Balbirnie M, Madsen AØ, Riekel C, Grothe R, Eisenberg D (2005) Structure of the cross-β spine of amyloid-like fibrils. Nature 435:773–778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olofsson A, Sauer-Eriksson AE, Ohman A (2006) The solvent protection of alzheimer amyloid-β-(1–42) fibrils as determined by solution NMR spectroscopy. J Biol Chem 281:477–483

    Article  CAS  PubMed  Google Scholar 

  • Palmer AG III, Kroenke CD, Loria JP (2001) Nuclear magnetic resonance methods for quantifying microsecond-to-millisecond motions in biological macromolecules. Methods Enzymol 339:204–238

    Article  CAS  PubMed  Google Scholar 

  • Perutz MF, Finch JT, Berriman J, Lesk A (2002) Amyloid fibers are water-filled nanotubes. Proc Natl Acad Sci U S A 99:5591–5595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petkova AT, Ishii Y, Balbach JJ, Antzutkin ON, Leapman RD, Delaglio F, Tycko R (2002) A structural model for Alzheimer’s β-amyloid fibrils based on experimental constraints from solid state NMR. Proc Natl Acad Sci U S A 99:16742–16747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petkova AT, Yau WM, Tycko R (2006) Experimental constraints on quaternary structure in Alzheimer’s β-amyloid fibrils. Biochemistry 45:498–512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rochet JC, Lansbury PT Jr (2000) Amyloid fibrillogenesis: themes and variations. Curr Opin Struct Biol 10:60–68

    Article  CAS  PubMed  Google Scholar 

  • Sawaya MR, Sambashivan S, Nelson R, Ivanova MI, Sievers SA, Apostol MI, Thompson MJ, Balbirnie M, Wiltzius JJ, McFarlane HT, Madsen AØ, Riekel C, Eisenberg D (2007) Atomic structures of amyloid cross-β spines reveal varied steric zippers. Nature 447:453–457

    Article  CAS  PubMed  Google Scholar 

  • Sipe JD (1992) Amyloidosis. Annu Rev Biochem 61:947–975

    Article  CAS  PubMed  Google Scholar 

  • Sunde M, Serpell LC, Bartlam M, Fraser PE, Pepys MB, Blake CC (1997) Common core structure of amyloid fibrils by synchrotron X-ray diffraction. J Mol Biol 273:729–739

    Article  CAS  PubMed  Google Scholar 

  • Tycko R, Sciarretta KL, Orgel JP, Meredith SC (2009) Evidence for novel β-sheet structures in Iowa mutant β-amyloid fibrils. Biochemistry 48:6072–6084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whittemore NA, Mishra R, Kheterpal I, Williams AD, Wetzel R, Serpersu EH (2005) Hydrogen–deuterium (H/D) exchange mapping of Aβ1–40 amyloid fibril secondary structure using nuclear magnetic resonance spectroscopy. Biochemistry 44:4434–4441

    Article  CAS  PubMed  Google Scholar 

  • Williams AD, Portelius E, Kheterpal I, Guo JT, Cook KD, Xu Y, Wetzel R (2004) Mapping Ab amyloid fibril secondary structure using scanning proline mutagenesis. J Mol Biol 335:833–842

    Article  CAS  PubMed  Google Scholar 

  • Wu KP, Kim S, Fela DA, Baum J (2008) Characterization of conformational and dynamic properties of natively unfolded human and mouse α-synuclein ensembles by NMR: implication for aggregation. J Mol Biol 378:1104–1115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi T, Yagi H, Goto Y, Matsuzaki K, Hoshino M (2010) A disulfide-linked amyloid-β peptide dimer forms a protofibril-like oligomer through a distinct pathway from amyloid fibril formation. Biochemistry 49:7100–7107

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi T, Matsuzaki K, Hoshino M (2011) Transient formation of intermediate conformational states of amyloid-β peptide revealed by heteronuclear magnetic resonance spectroscopy. FEBS Lett 585:1097–1102

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi T, Matsuzaki K, Hoshino M (2013) Interaction between soluble Aβ-(1–40) monomer and Aβ-(1–42) fibrils probed by paramagnetic relaxation enhancement. FEBS Lett 587:620–624

    Article  CAS  PubMed  Google Scholar 

  • Yoshimura Y, Lin Y, Yagi H, Lee YH, Kitayama H, Sakurai K, So M, Ogi H, Naiki H, Goto Y (2012) Distinguishing crystal-like amyloid fibrils and glass-like amorphous aggregates from their kinetics of formation. Proc Natl Acad Sci U S A 109:14446–14451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaru Hoshino.

Ethics declarations

Conflict of interest

Masaru Hoshino declares that he has no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoshino, M. Fibril formation from the amyloid-β peptide is governed by a dynamic equilibrium involving association and dissociation of the monomer. Biophys Rev 9, 9–16 (2017). https://doi.org/10.1007/s12551-016-0217-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12551-016-0217-7

Keywords

Navigation