Skip to main content
Log in

Alternaria toxins in South African sunflower seeds: cooperative study

  • Original Article
  • Published:
Mycotoxin Research Aims and scope Submit manuscript

Abstract

Sunflower seed samples (N = 80) from different sunflower cultivars originating from different localities in South Africa were analyzed for 15 toxins produced by fungi of the genus Alternaria by means of a simple one-step extraction dilute-and-shoot HPLC-MS/MS approach. References for valine-tenuazonic acid (Val-TeA), altenusin (ALTS), and altenuisol (ALTSOH) were isolated from fungal culture extracts and spectroscopically characterized. Additionally, valine-tenuazonic acid was tested regarding its cytotoxicity in comparison with tenuazonic acid (TeA) and showed less activity on HT-29 cells. Furthermore, alternariol monomethyl ether-3-O-ß-D-glucoside (AME-3G) was produced by fermentation of alternariol monomethyl ether (AME) with the fungus Rhizopus oryzae. The seed samples were analyzed both with and without hulls. The method covers the AAL toxins TA1 and TA2, altenuene (ALT) and iso-altenuene (iso-ALT), altenuisol, altenusin, altertoxin I (ATX-I) and altertoxin II (ATX-II), alternariol (AOH) and alternariol monomethyl ether, alternariol monomethyl ether-3-O-ß-D-glucoside, tenuazonic acid, allo-tenuazonic acid (allo-TeA) and valine-tenuazonic acid, and tentoxin (TEN). More than 80% of the samples were positive for one or more analytes above the respective limit of detection (0.2–23 μg/kg). Alternariol, its monomethyl ether, tentoxin, tenuazonic acid, altenuisol, and valine-tenuazonic acid were found in quantifiable amounts. The highest prevalences were found for tentoxin (73% positive, mean content 13.2 μg/kg, maximum level 130 ± 0.9 μg/kg) followed by tenuazonic acid (51% positive, mean content 630 μg/kg, maximum level 6300 ± 560 μg/kg). The obtained data were further analyzed statistically to identify quantitative or qualitative relationships between the levels of Alternaria toxin in the samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AAL TA1 :

AAL toxin TA1

AAL TA2 :

AAL toxin TA2

allo-TeA:

Allo-tenuazonic acid

ALT:

Altenuene

ALTS:

Altenusin

ALTSOH:

Altenuisol

AME:

Alternariol monomethyl ether

AME-3G:

Alternariol monomethyl ether-3-O-ß-D-glucoside

AOH:

Alternariol

AR:

Apparent recovery

ATX-I:

Altertoxin I

ATX-II:

Altertoxin II

CAD:

Collision gas pressure

EFSA:

European Food Safety Authority

EPI:

Enhanced product ion spectrum

ER:

Recovery of the extraction step

GS1:

Ion source gas 1

GS2:

Ion source gas 2

HPLC-MS/MS:

High-performance liquid chromatography coupled to tandem mass spectrometry

IS:

Ion spray voltage

iso-ALT:

Iso-altenuene

LOD:

Limit of detection

LOQ:

Limit of quantitation

MMT:

Million metric tons

SRM:

Selected reaction monitoring

SSE:

Signal suppression/enhancement

TeA:

Tenuazonic acid

TEM:

Ion source temperature

TEN:

Tentoxin

TTC:

Threshold of toxicological concern

USDA:

US Department of Agriculture

Val-TeA:

Valine-tenuazonic acid

References

  • Abbas HK, Vesonder RF, Boyette CD, Peterson SW (1993) Phytotoxicity of AAL-toxin and other compounds produced by Alternaria alternata to jimsonweed (Datura stramonium). Can J Bot 71:155–160

    Article  CAS  Google Scholar 

  • Amézqueta S, González-Peñas E, Murillo M, de Cerain AL (2005) Occurrence of ochratoxin a in cocoa beans: effect of shelling. Food Addit Contam 22:590–596

    Article  PubMed  Google Scholar 

  • Andersen B, Nielsen KF, Fernández Pinto V, Patriarca A (2015) Characterization of Alternaria strains from Argentinean blueberry, tomato, walnut and wheat. Int J Food Microbiol 196:1–10

    Article  CAS  PubMed  Google Scholar 

  • Asam S, Habler K, Rychlik M (2013a) Determination of tenuazonic acid in human urine by means of a stable isotope dilution assay. Anal Bioanal Chem 405:4149–4158

    Article  CAS  PubMed  Google Scholar 

  • Asam S, Lichtenegger M, Muzik K, Liu Y, Frank O, Hofmann T, Rychlik M (2013b) Development of analytical methods for the determination of tenuazonic acid analogues in food commodities. J Chromatogr A 1289:27–36

    Article  CAS  PubMed  Google Scholar 

  • Asam S, Liu Y, Konitzer K, Rychlik M (2011) Development of a stable isotope dilution assay for tenuazonic acid. J Agric Food Chem 59:2980–2987

    Article  CAS  PubMed  Google Scholar 

  • Carson ML (1985) Epidemiology and yield losses associated with Alternaria blight of sunflower. Phytopathology 75:1151–1156

    Article  Google Scholar 

  • Chaerani R, Voorrips RE (2006) Tomato early blight (Alternaria solani): the pathogen, genetics, and breeding for resistance. J Gen Plant Pathol 72:335–347

    Article  Google Scholar 

  • Chala A, Taye W, Ayalew A, Krska R, Sulyok M, Logrieco A (2014) Multimycotoxin analysis of sorghum (Sorghum bicolor L. Moench) and finger millet (Eleusine coracana L. Garten) from Ethiopia. Food Control 45:29–35

    Article  CAS  Google Scholar 

  • Chattopadhyay C (1999) Yield loss attributable to Alternaria blight of sunflower (Helianthus annuus L.) in India and some potentially effective control measures. Int J Pest Manag 45:15–21

    Article  Google Scholar 

  • Cheli F, Pinotti L, Rossi L, Dell'Orto V (2013) Effect of milling procedures on mycotoxin distribution in wheat fractions: a review. LWT - Food Sci Technol 54:307–314

    Article  CAS  Google Scholar 

  • Chelkowski J, Visconti A (eds) (1992) Alternaria biology, plant diseases and metabolites: Alternaria taxonomy: current status, viewpoint, challenges. Elsevier Science Publishers, Amsterdam

    Google Scholar 

  • Chen S, Xu X, Dai X, Yang C, Qiang S (2007) Identification of tenuazonic acid as a novel type of natural photosystem II inhibitor binding in Q(B)-site of Chlamydomonas reinhardtii. Biochim Biophys Acta 1767:306–318

    Article  CAS  PubMed  Google Scholar 

  • Davis ND, Diener UL, Morgan-Jones G (1977) Tenuazonic acid production by Alternaria alternata and Alternaria tenuissima isolated from cotton. Appl Environ Microbiol 34:155–157

    CAS  PubMed  PubMed Central  Google Scholar 

  • Downs SH, Mitakakis TZ, Marks GB, Car NG, Belousova EG, Leüppi JD, Xuan W, Downie SR, Tobias A, Peat JK (2001) Clinical importance of Alternaria exposure in children. Am J Respir Crit Care Med 164:456–459

    Article  Google Scholar 

  • European Food Safety Authority (2011) Scientific opinion on the risks for animal and public health related to the presence of Alternaria toxins in feed and food. EFSA J 9:1–97

    Google Scholar 

  • Fleck SC, Burkhardt B, Pfeiffer E, Metzler M (2012) Alternaria toxins: altertoxin II is a much stronger mutagen and DNA strand breaking mycotoxin than alternariol and its methyl ether in cultured mammalian cells. Toxicol Lett 214:27–32

    Article  CAS  PubMed  Google Scholar 

  • Gatenbeck S, Sierankiewicz J (1973) Microbial production of tenuazonic acid analogues. Antimicrob Agents Chemother 3:308–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilchrist DG, Grogan RG (1975) Production and nature of a host-specific toxin from Alternaria alternata f. sp. lycopersici. Phytopathology 66:165–171

    Article  Google Scholar 

  • Gitterman CO (1965) Antitumor, cytotoxic and antibacterial activities of tenuazonic acid and congeneric tetramic acids. J Med Chem:483–486

  • Hasan HAH (1995) Alternaria mycotoxins in black rot lesion of tomato fruit: conditions and regulation of their production. Mycopathologia 130:171–177

    Article  CAS  Google Scholar 

  • Hickert S, Bergmann M, Ersen S, Cramer B, Humpf H-U (2016a) Survey of Alternaria toxin contamination in food from the German market, using a rapid HPLC-MS/MS approach. Mycotox Res 32:7–18

    Article  CAS  Google Scholar 

  • Hickert S, Cramer B, Letzel MC, Humpf H-U (2016b) Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry imaging of ochratoxin A and fumonisins in mold-infected food. Rapid Commun Mass Spectrom 30:2508–2516

    Article  CAS  Google Scholar 

  • Hickert S, Gerding J, Ncube E, Hübner F, Flett B, Cramer B, Humpf H-U (2015a) A new approach using micro HPLC-MS/MS for multi-mycotoxin analysis in maize samples. Mycotox Res 31:109–115

    Article  CAS  Google Scholar 

  • Hickert S, Krug I, Cramer B, Humpf H-U (2015b) Detection and quantitative analysis of the non-cytotoxic allo-tenuazonic acid in tomato products by stable isotope dilution HPLC-MS/MS. J Agric Food Chem 63:10879–10884

    Article  CAS  PubMed  Google Scholar 

  • Hildebrand AA, Kohn BN, Pfeiffer E, Wefers D, Metzler M, Bunzel M (2015) Conjugation of the mycotoxins alternariol and alternariol monomethyl ether in tobacco suspension cells. J Agric Food Chem 63:4728–4736

    Article  CAS  PubMed  Google Scholar 

  • Hiltunen M, Söderhall K (1992) Alternariol-O-methyltransferase from Alternaria alternata: partial purification and relation to polyketide synthesis. Exp Mycol 46:44–51

    Article  Google Scholar 

  • Hövelmann Y, Hickert S, Cramer B, Humpf H-U (2016) Determination of exposure to the Alternaria mycotoxin tenuazonic acid and its isomer allo-tenuazonic acid in a German population by stable isotope dilution HPLC-MS3. J Agric Food Chem 64:6641–6647

    Article  PubMed  Google Scholar 

  • Ishiyama M (1997) A highly water-soluble disulfonated tetrazolium salt as a chromogenic indicator for NADH as well as cell viability. Talanta 44:1299–1305

    Article  CAS  PubMed  Google Scholar 

  • Joshi A, Min Z, Brumley WC, Dreifuss PA, Yang GC, Spon JA (1984) Mass spectrometry of the copper salt of tenuazonic acid. Biomed Mass Spectrom 11:101–105

    Article  CAS  Google Scholar 

  • Kjer J, Wray V, Edrada-Ebel R, Ebel R, Pretsch A, Lin W, Proksch P (2009) Xanalteric acids I and II and related phenolic compounds from an endophytic Alternaria sp. isolated from the mangrove plant Sonneratia alba. J Nat Prod 72:2053–2057

    Article  CAS  PubMed  Google Scholar 

  • Kosiak B, Torp M, Skjerve E, Andersen B (2004) Alternaria and Fusarium in Norwegian grains of reduced quality - a matched pair sample study. Int J Food Microbiol 93:51–62

    Article  PubMed  Google Scholar 

  • Lagopodi AL, Thanassoulopoulos CC (1998) Effect of a leaf spot disease caused by Alternaria alternata on yield of sunflower in Greece. Plant Dis 82:41–44

    Article  Google Scholar 

  • Lebrun MH, Dutfoy F, Gaudemer F, Kunesch G, Gaudemer A (1990) Detection and quantification of the fungal phytotoxin tenuazonic acid produced by Pyricularia oryzae. Phytochemistry 29:3777–3783

    Article  CAS  Google Scholar 

  • Lebrun MH, Nicolas L, Boutar M, Gaudemer F, Ranomenjanahary S, Gaudemer A (1988) Relationships between the structure and the phytotoxicity of the fungal toxin tenuazonic acid. Phytochemistry 27:77–84

    Article  CAS  Google Scholar 

  • Logrieco A, Moretti A, Solfrizzo M (2009) Alternaria toxins and plant diseases: an overview of origin, occurrence and risks. World Mycotoxin J 2:129–140

    Article  CAS  Google Scholar 

  • Lohrey L, Marschik S, Cramer B, Humpf H-U (2013) Large-scale synthesis of isotopically labeled 13C2 -tenuazonic acid and development of a rapid HPLC-MS/MS method for the analysis of tenuazonic acid in tomato and pepper products. J Agric Food Chem 61:114–120

    Article  CAS  PubMed  Google Scholar 

  • López P, Venema D, Mol H, Spanjer M, de Stoppelaar J, Pfeiffer E, de Nijs M (2016) Alternaria toxins and conjugates in selected foods in the Netherlands. Food Control 69:153–159

    Article  Google Scholar 

  • Malachová A, Sulyok M, Beltrán E, Berthiller F, Krska R (2014) Optimization and validation of a quantitative liquid chromatography-tandem mass spectrometric method covering 295 bacterial and fungal metabolites including all regulated mycotoxins in four model food matrices. J Chromatogr A 1362:145–156

    Article  PubMed  Google Scholar 

  • Mulac D, Humpf H-U (2011) Cytotoxicity and accumulation of ergot alkaloids in human primary cells. Toxicology 282:112–121

    Article  CAS  PubMed  Google Scholar 

  • Nielsen KF, Gravesen S, Nielsen PA, Andersen B, Thrane U, Frisvad JC (1999) Production of mycotoxins on artificially and naturally infested building materials. Mycopathologia 145:43–56

    Article  CAS  PubMed  Google Scholar 

  • Noser J, Schneider P, Rother M, Schmutz H (2011) Determination of six Alternaria toxins with UPLC-MS/MS and their occurrence in tomatoes and tomato products from the Swiss market. Mycotox Res 27:265–271

    Article  CAS  Google Scholar 

  • Ostry V (2008) Alternaria mycotoxins: an overview of chemical characterization, producers, toxicity, analysis and occurrence in foodstuffs. World Mycotoxin J 1:175–188

    Article  CAS  Google Scholar 

  • Pearson D (1962) The chemical analysis of foods fifth edition: 148–149. J. & A. Churchill Ltd.

  • Rodríguez-Carrasco Y, Mañes J, Berrada H, Juan C (2016) Development and validation of a LC-ESI-MS/MS method for the determination of Alternaria toxins alternariol, alternariol methyl-ether and tentoxin in tomato and tomato-based products. Toxins 8:328

    Article  PubMed Central  Google Scholar 

  • Rogers PM, Stevenson WR (2010) Aggressiveness and fungicide sensitivity of Alternaria dauci from cultivated carrot. Plant Dis 94:405–412

    Article  Google Scholar 

  • Rönz B, Strohe HG (2013) Lexikon Statistik: 174–212. Springer Gabler, Wiesbaden

    Google Scholar 

  • Rychlik M, Humpf H-U, Marko D, Dänicke S, Mally A, Berthiller F, Klaffke H, Lorenz N (2014) Proposal of a comprehensive definition of modified and other forms of mycotoxins including “masked” mycotoxins. Mycotox Res 30:197–205

    Article  CAS  Google Scholar 

  • Rychlik M, Lepper H, Weidner C, Asam S (2016) Risk evaluation of the Alternaria mycotoxin tenuazonic acid in foods for adults and infants and subsequent risk management. Food Control 68:181–185

    Article  CAS  Google Scholar 

  • De Saeger S, van Egmond H (2012) Special issue: masked mycotoxins. World Mycotoxin J 5:203–206

    Article  Google Scholar 

  • Sanzani SM, Reverberi M, Geisen R (2016) Mycotoxins in harvested fruits and vegetables: insights in producing fungi, biological role, conducive conditions, and tools to manage postharvest contamination. Postharvest Biol Tec 122:95–105

    Article  CAS  Google Scholar 

  • Shephard GS, Thiel PG, Sydenham EW, Vleggaar R, Marasas W (1991) Reversed-phase high-performance liquid chromatography of tenuazonic acid and related tetramic acids. J Chromatogr B 566:195–205

    Article  CAS  Google Scholar 

  • Siegel D, Merkel S, Bremser W, Koch M, Nehls I (2010) Degradation kinetics of the Alternaria mycotoxin tenuazonic acid in aqueous solutions. Anal Bioanal Chem 397:453–462

    Article  CAS  PubMed  Google Scholar 

  • Stack ME, Mazzola EP, Page SW, Pohland AE (1986) Mutagenic perylenequinone metabolites of Alternaria alternata: altertoxins I, II and III. J Nat Prod 49:866–871

    Article  CAS  PubMed  Google Scholar 

  • Sulyok M, Berthiller F, Krska R, Schuhmacher R (2006) Development and validation of a liquid chromatography/tandem mass spectrometric method for the determination of 39 mycotoxins in wheat and maize. Rapid Commun Mass Spectrom 20:2649–2659

    Article  CAS  PubMed  Google Scholar 

  • Thomma BPHJ (2003) Alternaria spp.: from general saprophyte to specific parasite. Mol Plant Pathol 4:225–236

    Article  CAS  PubMed  Google Scholar 

  • Tominaga H, Ishiyama M, Ohseto F, Sasamoto K, Hamamoto T, Suzuki K, Watanabe M (1999) A water soluble tetrazolium salt useful for colorimetric cell viability assay. Anal Commun 36:47–50

    Article  CAS  Google Scholar 

  • United States Department of Agriculture Foreign Agricultural Service (2014) Oilseeds and products annual the supply and demand for oilseeds in South Africa http://gain.fas.usda.gov/Recent%20GAIN%20Publications/Oilseeds%20and%20Products%20Annual_Pretoria_South%20Africa%20-%20Republic%20of_3-20-2015.pdf. Accessed 9 November 2016

  • United States Department of Agriculture Foreign Agricultural Service (2016) Oilseeds: World markets and trade https://apps.fas.usda.gov/psdonline/circulars/oilseeds.pdf. Accessed 9 November 2016

  • Van der Waals JE, Korsten L, Slippers B (2004) Genetic diversity among Alternaria solani isolates from potatoes in South Africa. Plant Dis 88:959–964

    Article  Google Scholar 

  • Vejdovszky K, Hahn K, Braun D, Warth B, Marko D (2016) Synergistic estrogenic effects of Fusarium and Alternaria mycotoxins in vitro. Arch Toxicol. doi:10.1007/s00204-016-1795-7

  • Walravens J, Mikula H, Rychlik M, Asam S, Ediage EN, Mavungu D, Diana J, van Landschoot A, Vanhaecke L, de Saeger S (2014) Development and validation of an ultra-high-performance liquid chromatography tandem mass spectrometric method for the simultaneous determination of free and conjugated Alternaria toxins in cereal-based foodstuffs. J Chromatogr A 1372:91–101

    Article  CAS  Google Scholar 

  • Xu W, Han X, Li F, Zhang L (2016) Natural occurrence of Alternaria toxins in the 2015 wheat from Anhui province, China. Toxins (Basel) 8:308–319

    Article  Google Scholar 

  • Yun C, Motoyama T, Osada H (2015) Biosynthesis of the mycotoxin tenuazonic acid by a fungal NRPS-PKS hybrid enzyme. Nat Commun 6:1–9

    Google Scholar 

  • Zhao K, Shao B, Yang D, Li F (2015) Natural occurrence of four Alternaria mycotoxins in tomato- and citrus-based foods in China. J Agric Food Chem 63:343–348

    Article  CAS  PubMed  Google Scholar 

  • Zwickel T, Klaffke H, Richards K, Rychlik M (2016) Development of a high performance liquid chromatography tandem mass spectrometry based analysis for the simultaneous quantification of various Alternaria toxins in wine, vegetable juices and fruit juices. J Chromatogr A 1455:74–85

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Theresa Zwickel (Federal Institute of Risk Assessment, Berlin, Germany) for supply of a reference for altertoxin II. Furthermore, we thank Steffen Lürwer and Angela Klusmeier-König for assistance during sample preparation and Moses Ramusi for collecting sunflower samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Ulrich Humpf.

Ethics declarations

Conflict of interest

None

Electronic supplementary material

ESM 1

(DOCX 462 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hickert, S., Hermes, L., Marques, L.M.M. et al. Alternaria toxins in South African sunflower seeds: cooperative study. Mycotoxin Res 33, 309–321 (2017). https://doi.org/10.1007/s12550-017-0290-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12550-017-0290-1

Keywords

Navigation