Skip to main content
Log in

Survey of Alternaria toxin contamination in food from the German market, using a rapid HPLC-MS/MS approach

  • Original Article
  • Published:
Mycotoxin Research Aims and scope Submit manuscript

Abstract

A HPLC-MS/MS-based method for the quantification of nine mycotoxins produced by fungi of the genus Alternaria in various food matrices was developed. The method relies on a single-step extraction, followed by dilution of the raw extract and direct analysis. In combination with an analysis time per sample of 12 min, the sample preparation is cost-effective and easy to handle. The method covers alternariol (AOH), alternariol monomethyl ether (AME), tenuazonic acid (TeA), altenuene (ALT), iso-altenuene (isoALT), tentoxin (TEN), altertoxin-I (ATX-I), and the AAL toxins TA1 and TA2. Some Alternaria toxins which are either not commercially available or very expensive, namely AOH, AME, ALT, isoALT, and ATX-I, were isolated as reference compounds from fungal cultures. The method was extensively validated for tomato products, bakery products, sunflower seeds, fruit juices, and vegetable oils. AOH, AME, TeA, and TEN were found in quantifiable amounts and 92.1 % of all analyzed samples (n = 96) showed low level contamination with one or more Alternaria toxins. Based on the obtained results, the average daily exposure to Alternaria toxins in Germany was calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abbas HK, Tanaka T, Duke SO, Porter JK, Wray EM, Hodges L, Sessions AE, Wang E, Merrill AH, Riley RT Jr (1994) Fumonisin- and AAL-toxin-induced disruption of sphingolipid metabolism with accumulation of free sphingoid bases. Plant Physiol 106:1085–1093

    PubMed Central  CAS  PubMed  Google Scholar 

  • Abbas HK, Vesonder RF, Boyette CD, Peterson SW (1993) Phytotoxicity of AAL-toxin and other compounds produced by Alternaria alternata to Jimsonweed (Datura stramonium). Can J Bot 71:155–160

    Article  CAS  Google Scholar 

  • Ackermann Y, Curtui V, Dietrich R, Gross M, Latif H, Märtlbauer E, Usleber E (2011) Widespread occurrence of low levels of alternariol in apple and tomato products, as determined by comparative immunochemical assessment using monoclonal and polyclonal antibodies. J Agric Food Chem 59:6360–6368

    Article  CAS  PubMed  Google Scholar 

  • Akimitsu K, Peever TL, Timmer LW (2003) Molecular, ecological and evolutionary approaches to understanding Alternaria diseases of citrus. Mol Plant Pathol 4:435–446

    Article  CAS  PubMed  Google Scholar 

  • An Y, Zhao T, Miao J, Liu G-T, Zheng Y-Z, Xu Y, van Etten L (1989) Isolation, identification, and mutagenicity of alternariol monomethyl ether. J Agric Food Chem 37:1341–1343

    Article  CAS  Google Scholar 

  • Asam S, Konitzer K, Schieberle P, Rychlik M (2009) Stable isotope dilution assays of alternariol and alternariol monomethyl ether in beverages. J Agric Food Chem 57:5152–5160

    Article  CAS  PubMed  Google Scholar 

  • Brugger E, Wagner J, Schumacher DM, Koch K, Podlech J, Metzler M, Lehmann L (2006) Mutagenicity of the mycotoxin alternariol in cultured mammalian cells. Toxicol Lett 164:221–230

    Article  CAS  PubMed  Google Scholar 

  • Carson ML (1985) Epidemiology and yield losses associated with Alternaria blight of sunflower. Phytopathology 75:1151–1156

    Article  Google Scholar 

  • D´Mello JPF, Placinta CM, Macdonald AMC (1999) Fusarium mycotoxins: a review of global implications for animal health, welfare and productivity. Anim Feed Sci Tech 80:183–205

    Article  Google Scholar 

  • Delgado T, Gómez-Cordovés C (1998) Natural occurrence of alternariol and alternariol methyl ether in Spanish apple juice concentrates. J Chromatogr A 815:93–97

    Article  CAS  PubMed  Google Scholar 

  • European Committee for Standardization (CEN) Food Analysis - performance criteria for single laboratory validated methods of analysis for the determination of mycotoxins (CEN/TR 16059:2010). Austrian Standards Institute, Vienna, 2011

  • European Food Safety Authority (EFSA) (2008) EFSA comprehensive food consumption database. http://www.efsa.europa.eu/en/datexfoodcdb/datexfooddb. Accessed 2 September 2015

  • European Food Safety Authority (EFSA) (2011a) Scientific opinion on the risks for animal and public health related to the presence of Alternaria toxins in feed and food. EFSA J 9:1–97

    Google Scholar 

  • European Food Safety Authority (EFSA) (2011b) Use of the EFSA Comprehensive European Food Consumption Database in Exposure Assessment. EFSA J 9:1–34

    Google Scholar 

  • Fleck SC, Burkhardt B, Pfeiffer E, Metzler M (2012) Alternaria toxins: Altertoxin II is a much stronger mutagen and DNA strand breaking mycotoxin than alternariol and its methyl ether in cultured mammalian cells. Toxicol Lett 214:27–32

    Article  CAS  PubMed  Google Scholar 

  • Gravesen S, Nielsen PA, Iversen R, Nielsen KF (1999) Microfungal contamination of damp buildings–examples of risk constructions and risk materials. Environ Health Perspect 107:505–508

    Article  PubMed Central  PubMed  Google Scholar 

  • Hasan HAH (1995) Alternaria mycotoxins in black rot lesion of tomato fruit: conditions and regulation of their production. Mycopathologia 130:171–177

    Article  CAS  Google Scholar 

  • Hickert S, Gerding J, Ncube E, Hübner F, Flett B, Cramer B, Humpf H-U (2015) A new approach using micro HPLC-MS/MS for multi-mycotoxin analysis in maize samples. Mycotox Res 31:109–115

    Article  CAS  Google Scholar 

  • Köhler W, Schachtel GA, Voleske P (2007) Biostatistik, 4, aktualisierte und erw Aufl. Springer-Lehrbuch. Springer, Berlin, Heidelberg, New York

    Google Scholar 

  • Kosiak B, Torp M, Skjerve E, Andersen B (2004) Alternaria and Fusarium in Norwegian grains of reduced quality–a matched pair sample study. Int J Food Microbiol 93:51–62

    Article  PubMed  Google Scholar 

  • Králová J, Hajslová J, Poustka J, Hochmann M, Bjelková M, Odstrcilová L (2006) Occurrence of Alternaria toxins in fibre flax, linseed, and peas grown in organic and conventional farms: monitoring pilot study. Czech J Food Sci 24:288–296

    Google Scholar 

  • Kroes R, Renwick A, Cheeseman M, Kleiner J, Mangelsdorf I, Piersma A, Schilter B, Schlatter J, van Schothorst F, Vos J, Würtzen G (2004) Structure-based thresholds of toxicological concern (TTC): guidance for application to substances present at low levels in the diet. Food Chem Toxicol 42:65–83

    Article  CAS  PubMed  Google Scholar 

  • Lau BP, Scott PM, Lewis DA, Kanhere SR, Cléroux C, Roscoe VA (2003) Liquid chromatography–mass spectrometry and liquid chromatography–tandem mass spectrometry of the Alternaria mycotoxins alternariol and alternariol monomethyl ether in fruit juices and beverages. J Chromatogr A 998:119–131

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Rychlik M (2013) Development of a stable isotope dilution LC-MS/MS method for the Alternaria toxins tentoxin, dihydrotentoxin, and isotentoxin. J Agric Food Chem 61:2970–2978

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Rychlik M (2015) Biosynthesis of seven carbon-13 labeled Alternaria toxins including altertoxins, alternariol, and alternariol methyl ether, and their application to a multiple stable isotope dilution assay. Anal Bioanal Chem 407:1357–1369

    Article  CAS  PubMed  Google Scholar 

  • Loggrieco A, Moretti A, Solfrizzo M (2009) Alternaria toxins and plant diseases: an overview of origin, occurrence and risks. World Mycotoxin J 2:129–140

    Article  Google Scholar 

  • Lohrey L, Marschik S, Cramer B, Humpf H-U (2013) Large-scale synthesis of isotopically labeled 13C2 -tenuazonic acid and development of a rapid HPLC-MS/MS method for the analysis of tenuazonic acid in tomato and pepper products. J Agric Food Chem 61:114–120

    Article  CAS  PubMed  Google Scholar 

  • Malachová A, Sulyok M, Beltrán E, Berthiller F, Krska R (2014) Optimization and validation of a quantitative liquid chromatography-tandem mass spectrometric method covering 295 bacterial and fungal metabolites including all regulated mycotoxins in four model food matrices. J Chromatogr A 1362:145–156

    Article  PubMed  Google Scholar 

  • Noser J, Schneider P, Rother M, Schmutz H (2011) Determination of six Alternaria toxins with UPLC-MS/MS and their occurrence in tomatoes and tomato products from the Swiss market. Mycotox Res 27:265–271

    Article  CAS  Google Scholar 

  • Ostry V (2008) Alternaria Mycotoxins: an overview of chemical characterization, producers, toxicity, analysis and occurrence in foodstuffs. World Mycotoxin J 1:175–188

    Article  CAS  Google Scholar 

  • Pero RW, Owens RG, Dale SW, Harvan D (1971) Isolation and identification of a new toxin, altenuene, from the fungus Alternaria tenuis. Biochimi Biophys Acta 230:170–179

    Article  CAS  Google Scholar 

  • Pero RW, Posner H, Blois M, Harvan D, Spalding JW (1973) Toxicity of metabolites produced by the "Alternaria". Environ Health Perspect 4:87–94

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pfeiffer E, Eschenbach S, Metzler M (2007) Alternaria toxins: DNA strand-breaking activity in mammalian cells in vitro. Mycotox Res 23:152–157

    Article  CAS  Google Scholar 

  • Prelle A, Spadaro D, Garibaldi A, Gullino ML (2013) A new method for detection of five Alternaria toxins in food matrices based on LC-APCI-MS. Food Chem 140:161–167

    Article  CAS  PubMed  Google Scholar 

  • Rang J, Crous PW, Mchau GRA, Serdani M, Song S (2002) Phylogenetic analysis of Alternaria spp. associated with apple core rot and citrus black rot in South Africa. Mycol Res 106:1151–1162

    Article  Google Scholar 

  • Scott PM, Lawrence GA, Lau BP (2006) Analysis of wines, grape juices and cranberry juices for Alternaria toxins. Mycotox Res 22:142–147

    Article  CAS  Google Scholar 

  • Stack ME, Mazzola EP, Page SW, Pohland AE (1986) Mutagenic perylenequinone metabolites of Alternaria alternata: altertoxins I, II and III. J Nat Prod 49:866–871

    Article  CAS  PubMed  Google Scholar 

  • Stickings CE (1959) Metabolites of Alternaria tenuis auct.: the structure of tenuazonic acid. Biochem J 72:332–340

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Stockmann-Juvala H, Savolainen K (2008) A review of the toxic effects and mechanisms of action of fumonisin B1. Hum Exp Toxicol 27:799–809

    Article  CAS  PubMed  Google Scholar 

  • Streit E, Schwab C, Sulyok M, Naehrer K, Krska R, Schatzmayr G (2013) Multi-mycotoxin screening reveals the occurrence of 139 different secondary metabolites in feed and feed ingredients. Toxins (Basel) 5:504–523

    Article  CAS  Google Scholar 

  • Sulyok M, Krska R, Schuhmacher R (2007) A liquid chromatography/tandem mass spectrometric multi-mycotoxin method for the quantification of 87 analytes and its application to semi-quantitative screening of moldy food samples. Anal Bioanal Chem 389:1505–1523

    Article  CAS  PubMed  Google Scholar 

  • Sulyok M, Krska R, Schuhmacher R (2010) Application of an LC–MS/MS based multi-mycotoxin method for the semi-quantitative determination of mycotoxins occurring in different types of food infected by moulds. Food Chem 119:408–416

    Article  CAS  Google Scholar 

  • van der Waals JE, Korsten L, Slippers B (2004) Genetic diversity among Alternaria solani isolates from potatoes in South Africa. Plant Dis 88:959–964

    Article  Google Scholar 

  • Walravens J, Mikula H, Rychlik M, Asam S, Ediage EN, Mavungu D, Diana J, van Landschoot A, Vanhaecke L, de Saeger S (2014) Development and validation of an ultra-high-performance liquid chromatography tandem mass spectrometric method for the simultaneous determination of free and conjugated Alternaria toxins in cereal-based foodstuffs. J Chromatogr A 1372:91–101

    Article  CAS  Google Scholar 

  • Yang D (2005) Isolation of wood-inhabiting fungi from Canadian hardwood logs. Can J Microbiol 51:1–6

    Article  PubMed  Google Scholar 

  • Zhao K, Shao B, Yang D, Li F (2015) Natural occurrence of four Alternaria mycotoxins in tomato- and citrus-based foods in China. J Agric Food Chem 63:343–348

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Sciex (Darmstadt) for supply of a QTRAP® 5500 mass spectrometer. We thank Angela Klusmeier-König and Imke Westkamp for support during sample preparation.

Source of funding

We thank the NRW Graduate School of Chemistry for the financial support.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Ulrich Humpf.

Electronic supplementary material

Detailed description of the isolation procedure for AOH, AME, ALT, isoALT and ATX-I from fungal cultures including spectroscopic data and NMR data of synthesized TeA can be found in the Supplementary Material. Table S1 gives the complete validation parameters for all matrices, Tables S2 and S3 give concentrations of all calibration levels and spiking levels for method performance assessment.

ESM 1

(DOCX 88 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hickert, S., Bergmann, M., Ersen, S. et al. Survey of Alternaria toxin contamination in food from the German market, using a rapid HPLC-MS/MS approach. Mycotoxin Res 32, 7–18 (2016). https://doi.org/10.1007/s12550-015-0233-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12550-015-0233-7

Keywords

Navigation